Difference between revisions of "2019 AIME I Problems/Problem 6"

m (AIME needs to be capitilized)
(Problem 6)
Line 2: Line 2:
  
 
==Problem 6==
 
==Problem 6==
 +
In convex quadrilateral <math>KLMN</math> side <math>\overline{MN}</math> is perpendicular to diagonal <math>\overline{KM}</math>, side <math>\overline{KL}</math> is perpendicular to diagonal <math>\overline{LN}</math>, <math>MN = 65</math>, and <math>KL = 28</math>. The line through <math>L</math> perpendicular to side <math>\overline{KN}</math> intersects diagonal <math>\overline{KM}</math> at <math>O</math> with <math>KO = 8</math>. Find <math>MO</math>.
 +
 
==Solution==
 
==Solution==
 
==See Also==
 
==See Also==
 
{{AIME box|year=2019|n=I|num-b=5|num-a=7}}
 
{{AIME box|year=2019|n=I|num-b=5|num-a=7}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 19:31, 14 March 2019

The 2019 AIME I takes place on March 13, 2019.

Problem 6

In convex quadrilateral $KLMN$ side $\overline{MN}$ is perpendicular to diagonal $\overline{KM}$, side $\overline{KL}$ is perpendicular to diagonal $\overline{LN}$, $MN = 65$, and $KL = 28$. The line through $L$ perpendicular to side $\overline{KN}$ intersects diagonal $\overline{KM}$ at $O$ with $KO = 8$. Find $MO$.

Solution

See Also

2019 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png