Difference between revisions of "2019 AIME I Problems/Problem 8"
(→Problem 8) |
(→Problem 8) |
||
Line 2: | Line 2: | ||
==Problem 8== | ==Problem 8== | ||
+ | Let <math>x</math> be a real number such that <math>\sin^{10}x+\cos^{10} x = \tfrac{11}{36}</math>. Then <math>\sin^{12}x+\cos^{12} x = \tfrac{m}{n}</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
==Solution== | ==Solution== |
Revision as of 19:33, 14 March 2019
The 2019 AIME I takes place on March 13, 2019.
Contents
Problem 8
Let be a real number such that . Then where and are relatively prime positive integers. Find .
Solution
NOT ALLOWED!
Solution 2
Can't do that!
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.