Difference between revisions of "2019 AIME I Problems/Problem 8"

(Problem 8)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
NOT ALLOWED!
 
  
 
==Solution 2==
 
==Solution 2==

Revision as of 19:33, 14 March 2019

The 2019 AIME I takes place on March 13, 2019.

Problem 8

Let $x$ be a real number such that $\sin^{10}x+\cos^{10} x = \tfrac{11}{36}$. Then $\sin^{12}x+\cos^{12} x = \tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Solution 2

Can't do that!

See Also

2019 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png