Difference between revisions of "2019 AIME I Problems/Problem 8"

(Solution 2)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
 +
 +
We can substitute <math>y = \sin^2{x}</math>. Since we know that <math>\cos^2{x}=1-\sin^2{x}</math>, we can do some simplification.
 +
 +
This yields <math>y^5+(1-y)^5=\frac{11}{36}</math>. From this, we can substitute again to get some cancellation through binomials. If we let <math>z=1/2-y</math>, we can simplify the equation to <math>(1/2+z^5)+(1/2-z^5)^5=\frac{11}{36}</math>. After using binomial theorem, this simplifies to <math>\frac{1}{16}(80z^4+40z^2+1)=11/36</math>. If we use the quadratic theorem, we obtain that <math>z^2=\pm\frac{1}{12}</math>, so <math>z=\pm\frac{1}{2\sqrt{3}}</math>. By plugging z into <math>(1/2-z)^6+(1/2+z)^6</math> (which is equal to <math>sin^{12}{x}+cos^{12}{x}</math>, we can either use binomial theorem or sum of cubes to simplify, and we end up with 13/54. Therefore, the answer is <math>\boxed{67}</math>.
 +
 +
eric2020, inspired by Tommy2002
  
 
==Solution 2==
 
==Solution 2==

Revision as of 21:16, 14 March 2019

The 2019 AIME I takes place on March 13, 2019.

Problem 8

Let $x$ be a real number such that $\sin^{10}x+\cos^{10} x = \tfrac{11}{36}$. Then $\sin^{12}x+\cos^{12} x = \tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

We can substitute $y = \sin^2{x}$. Since we know that $\cos^2{x}=1-\sin^2{x}$, we can do some simplification.

This yields $y^5+(1-y)^5=\frac{11}{36}$. From this, we can substitute again to get some cancellation through binomials. If we let $z=1/2-y$, we can simplify the equation to $(1/2+z^5)+(1/2-z^5)^5=\frac{11}{36}$. After using binomial theorem, this simplifies to $\frac{1}{16}(80z^4+40z^2+1)=11/36$. If we use the quadratic theorem, we obtain that $z^2=\pm\frac{1}{12}$, so $z=\pm\frac{1}{2\sqrt{3}}$. By plugging z into $(1/2-z)^6+(1/2+z)^6$ (which is equal to $sin^{12}{x}+cos^{12}{x}$, we can either use binomial theorem or sum of cubes to simplify, and we end up with 13/54. Therefore, the answer is $\boxed{67}$.

eric2020, inspired by Tommy2002

Solution 2

First, for simplicity, let $a=\sin{x}$ and $b=\cos{x}$. Note that $a^2+b^2=1$. We then bash the rest of the problem out. Take the tenth power of this expression and get $a^{10}+b^{10}+5a^2b^2(a^6+b^6)+10a^4b^4(a^2+b^2)=\frac{11}{36}+5a^2b^2(a^6+b^6)+10a^4b^4=1$. Note that we also have $\frac{11}{36}=a^{10}+b^{10}=(a^{10}+b^{10})(a^2+b^2)=a^{12}+b^{12}+a^2b^2(a^8+b^8)$. So, it suffices to compute $a^2b^2(a^8+b^8)$. Let $y=a^2b^2$. We have from cubing $a^2+b^2=1$ that $a^6+b^6+3a^2b^2(a^2+b^2)=1$ or $a^6+b^6=1-3y$. Next, using $\frac{11}{36}+5a^2b^2(a^6+b^6)+10a^4b^4=1$, we get $a^2b^2(a^6+b^6)+2a^4b^4=\frac{5}{36}$ or $y(1-3y)+2y^2=y-y^2=\frac{5}{36}$. Solving gives $y=1$ or $y=\frac{1}{6}$. Clearly $y=1$ is extraneous, so $y=\frac{1}{6}$. Now note that $a^4+b^4=(a^2+b^2)-2a^2b^2=\frac{2}{3}$, and $a^8+b^8=(a^4+b^4)^2-2a^4b^4=\frac{4}{9}-\frac{1}{18}=\frac{7}{18}$. Thus we finally get $a^{12}+b^{12}=\frac{11}{36}-\frac{7}{18}*\frac{1}{6}=\frac{13}{54}$, giving $\boxed{067}$.

-Emathmaster

See Also

2019 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png