Difference between revisions of "2019 AIME I Problems/Problem 10"

m (Solution)
(Solution)
Line 21: Line 21:
  
 
Plugging this into our other Vieta equation, we have <math> 3 \left( \dfrac{400}{9} -2S \right) +9S = 19</math>. This gives <math>S = - \dfrac{343}{9} \Rightarrow \left| S \right| = \dfrac{343}{9}</math>. Since 343 is relatively prime to 9, <math>m+n = 343+9 = \fbox{352}</math>.
 
Plugging this into our other Vieta equation, we have <math> 3 \left( \dfrac{400}{9} -2S \right) +9S = 19</math>. This gives <math>S = - \dfrac{343}{9} \Rightarrow \left| S \right| = \dfrac{343}{9}</math>. Since 343 is relatively prime to 9, <math>m+n = 343+9 = \fbox{352}</math>.
 +
 +
==Solution 2==
 +
This is a quick fake solve using <cmath>z_q = 0</cmath> where <cmath>1 \le q \le 673</cmath> and only <cmath>z_1,z_2 \neq 0</cmath>.
  
 
==See Also==
 
==See Also==
 
{{AIME box|year=2019|n=I|num-b=9|num-a=11}}
 
{{AIME box|year=2019|n=I|num-b=9|num-a=11}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 14:18, 15 March 2019

The 2019 AIME I takes place on March 13, 2019.

Problem 10

For distinct complex numbers $z_1,z_2,\dots,z_{673}$, the polynomial \[(x-z_1)^3(x-z_2)^3 \cdots (x-z_{673})^3\]can be expressed as $x^{2019} + 20x^{2018} + 19x^{2017}+g(x)$, where $g(x)$ is a polynomial with complex coefficients and with degree at most $2016$. The value of \[\left| \sum_{1 \le j <k \le 673} z_jz_k \right|\]can be expressed in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

In order to begin this problem, we must first understand what it is asking for. The notation \[\left| \sum_{1 \le j <k \le 673} z_jz_k \right|\] simply asks for the absolute value of the sum of the product of the distinct unique roots of the polynomial taken two at a time or \[(z_1z_2+z_1z_3+ \dots + z_1z_{672}+z_1z_{673})+(z_2z_3+z_2z_4+ \dots +z_2z_{673}) + (z_3z_4+z_3z_5+ \dots +z_3z_{673}) + \dots +z_{672}z_{673}.\] Call this sum $S$.

Now we can begin the problem. Rewrite the polynomial as $P=(x-z_1)(x-z_1)(x-z_1)(x-z_2)(x-z_2)(x-z_2) \dots (x-z_{673})(x-z_{673})(x-z_{673})$. Then we have that the roots of $P$ are $z_1,z_1,z_1,z_2,z_2,z_2, \dots , z_{673},z_{673},z_{673}$.

By Vieta's formulas, we have that the sum of the roots of $P$ is $(-1)^1 * \dfrac{20}{1}=-20=z_1+z_1+z_1+z_2+z_2+z_2+ \dots + z_{673}+z_{673}+z_{673}=3(z_1+z_2+z_3+ \dots +z_{673})$. Thus, $z_1+z_2+z_3+ \dots +z_{673}=- \dfrac{20}{3}.$

Similarly, we also have that the the sum of the roots of $P$ taken two at a time is $(-1)^2 * \dfrac{19}{1} = 19.$ This is equal to $z_1^2+z_1^2+z_1^2+z_1z_2+z_1z_2+z_1z_2+ \dots =  \\ 3(z_1^2+z_2^2+ \dots + z_{673}^2) + 9(z_1z_2+z_1z_3+z_1z_4+ \dots + z_{672}z_{673}) =  3(z_1^2+z_2^2+ \dots + z_{673}^2) + 9S.$

Now we need to find and expression for $z_1^2+z_2^2+ \dots + z_{673}^2$ in terms of $S$. We note that $(z_1+z_2+z_3+ \dots +z_{673})^2= (-20/3)^2=\dfrac{400}{9} \\ =(z_1^2+z_2^2+ \dots + z_{673}^2)+2(z_1z_2+z_1z_3+z_1z_4+ \dots + z_{672}z_{673})=(z_1^2+z_2^2+ \dots + z_{673}^2)+2S.$ Thus, $z_1^2+z_2^2+ \dots + z_{673}^2= \dfrac{400}{9} -2S$.

Plugging this into our other Vieta equation, we have $3 \left( \dfrac{400}{9} -2S \right) +9S = 19$. This gives $S = - \dfrac{343}{9} \Rightarrow \left| S \right| = \dfrac{343}{9}$. Since 343 is relatively prime to 9, $m+n = 343+9 = \fbox{352}$.

Solution 2

This is a quick fake solve using \[z_q = 0\] where \[1 \le q \le 673\] and only \[z_1,z_2 \neq 0\].

See Also

2019 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png