Difference between revisions of "2016 AMC 10B Problems/Problem 25"
m |
(→Solution) |
||
Line 29: | Line 29: | ||
where <math>\phi(k)</math> is the [[Euler Totient Function]]. Basically <math>\phi(k)</math> counts the number of fractions with <math>k</math> as its denominator (after simplification). This comes out to be <math>31</math>. | where <math>\phi(k)</math> is the [[Euler Totient Function]]. Basically <math>\phi(k)</math> counts the number of fractions with <math>k</math> as its denominator (after simplification). This comes out to be <math>31</math>. | ||
− | Because the value of <math>f(x)</math> is at least 0 and can increase 31 times, there are a total of <math>\fbox{\textbf{(A)}\ 32}</math> different possible values of <math>f(x)</math>. | + | Because the value of <math>f(x)</math> is at least <math>0</math> and can increase <math>31</math> times, there are a total of <math>\fbox{\textbf{(A)}\ 32}</math> different possible values of <math>f(x)</math>. |
==See Also== | ==See Also== | ||
{{AMC10 box|year=2016|ab=B|num-b=24|after=Last Problem}} | {{AMC10 box|year=2016|ab=B|num-b=24|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 20:53, 4 January 2020
Problem
Let , where denotes the greatest integer less than or equal to . How many distinct values does assume for ?
Solution
Since , we have
The function can then be simplified into
which becomes
We can see that for each value of , can equal integers from to .
Clearly, the value of changes only when is equal to any of the fractions .
So we want to count how many distinct fractions less than have the form where . We can find this easily by computing
where is the Euler Totient Function. Basically counts the number of fractions with as its denominator (after simplification). This comes out to be .
Because the value of is at least and can increase times, there are a total of different possible values of .
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.