Difference between revisions of "2018 AMC 8 Problems/Problem 20"
m (added solution) |
(→Solution 3) |
||
Line 33: | Line 33: | ||
<math>\triangle{ADE} \sim \triangle{ABC} \sim \triangle{EFB}</math>. We can substitute <math>\overline{DA}</math> as <math>\frac{1}{3}x</math> and <math>\overline{CD}</math> as <math>\frac{2}{3}x</math>, where <math>x</math> is <math>\overline{AC}</math>. Side <math>\overline{CB}</math> having, distance <math>y</math>, has <math>2</math> parts also. And <math>\overline{CF}</math> and <math>\overline{FB}</math> are <math>\frac{1}{3}y</math> and <math>\frac{2}{3}y</math> respectfully. You can consider the height of <math>\triangle{ADE}</math> and <math>\triangle{EFB}</math> as <math>z</math> and <math>2z</math> respectfully. The area of <math>\triangle{ADE}</math> is <math>\frac{1\cdot z}{2}=0.5z</math> because the area formula for a triangle is <math>\frac{1}{2}bh</math> or <math>\frac{bh}{2}</math>. The area of <math>\triangle{EFB}</math> will be <math>\frac{2\cdot 2z}{2}=2z</math>. So the area of <math>\triangle{ABC}</math> will be <math>\frac{3\cdot 2z+z}{2}=\frac{3\cdot 3z}{2}=\frac{9z}{2}=4.5z</math>. The area of parallelogram <math>CDEF</math> will be <math>4.5z-(0.5z+2z)=4.5z-2.5z=2z</math>. Parallelogram <math>CDEF</math> to <math>\triangle{ABC}= \frac{2z}{4.5z}=\frac{2}{4.5}=\frac{4}{9}</math>. The answer is <math>\boxed{(A) \frac{4}{9}}</math>. | <math>\triangle{ADE} \sim \triangle{ABC} \sim \triangle{EFB}</math>. We can substitute <math>\overline{DA}</math> as <math>\frac{1}{3}x</math> and <math>\overline{CD}</math> as <math>\frac{2}{3}x</math>, where <math>x</math> is <math>\overline{AC}</math>. Side <math>\overline{CB}</math> having, distance <math>y</math>, has <math>2</math> parts also. And <math>\overline{CF}</math> and <math>\overline{FB}</math> are <math>\frac{1}{3}y</math> and <math>\frac{2}{3}y</math> respectfully. You can consider the height of <math>\triangle{ADE}</math> and <math>\triangle{EFB}</math> as <math>z</math> and <math>2z</math> respectfully. The area of <math>\triangle{ADE}</math> is <math>\frac{1\cdot z}{2}=0.5z</math> because the area formula for a triangle is <math>\frac{1}{2}bh</math> or <math>\frac{bh}{2}</math>. The area of <math>\triangle{EFB}</math> will be <math>\frac{2\cdot 2z}{2}=2z</math>. So the area of <math>\triangle{ABC}</math> will be <math>\frac{3\cdot 2z+z}{2}=\frac{3\cdot 3z}{2}=\frac{9z}{2}=4.5z</math>. The area of parallelogram <math>CDEF</math> will be <math>4.5z-(0.5z+2z)=4.5z-2.5z=2z</math>. Parallelogram <math>CDEF</math> to <math>\triangle{ABC}= \frac{2z}{4.5z}=\frac{2}{4.5}=\frac{4}{9}</math>. The answer is <math>\boxed{(A) \frac{4}{9}}</math>. | ||
+ | |||
+ | By: sap2018 | ||
+ | |||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2018|num-b=19|num-a=21}} | {{AMC8 box|year=2018|num-b=19|num-a=21}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 19:15, 30 September 2019
Problem 20
In a point is on with and Point is on so that and point is on so that What is the ratio of the area of to the area of
Solution
By similar triangles, we have . Similarly, we see that Using this information, we get Then, since , it follows that the . Thus, the answer would be
Sidenote: denotes the area of triangle . Similarly, denotes the area of figure .
Solution 2
We can extend it into a parallelogram, so it would equal . The smaller parallelogram is 1 a times 2 b. The smaller parallelogram is of the larger parallelogram, so the answer would be , since the triangle is of the parallelogram, so the answer is
By babyzombievillager
Solution 3
. We can substitute as and as , where is . Side having, distance , has parts also. And and are and respectfully. You can consider the height of and as and respectfully. The area of is because the area formula for a triangle is or . The area of will be . So the area of will be . The area of parallelogram will be . Parallelogram to . The answer is .
By: sap2018
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.