Difference between revisions of "2014 AMC 10B Problems/Problem 22"

m (Solution)
(Solution)
Line 16: Line 16:
 
[[Category: Introductory Geometry Problems]]
 
[[Category: Introductory Geometry Problems]]
  
==Solution==
+
==Solution 1==
  
 
We connect the centers of the circle and one of the semicircles, then draw the perpendicular from the center of the middle circle to that side, as shown.
 
We connect the centers of the circle and one of the semicircles, then draw the perpendicular from the center of the middle circle to that side, as shown.
Line 38: Line 38:
  
 
We will start by creating an equation by the Pythagorean theorem: <cmath>\sqrt{1^2 + \left(\frac12\right)^2} = \sqrt{\frac54} = \frac{\sqrt5}{2}.</cmath>
 
We will start by creating an equation by the Pythagorean theorem: <cmath>\sqrt{1^2 + \left(\frac12\right)^2} = \sqrt{\frac54} = \frac{\sqrt5}{2}.</cmath>
 +
 +
==Solution 2 (Risky)==
  
 
Let's call <math>r</math> as the radius of the circle that we want to find. We see that the hypotenuse of the bold right triangle is <math>\dfrac{1}{2}+r</math>, and thus <math>r</math> is <math>\boxed{\textbf{(B)} \frac{\sqrt{5}-1}{2}}</math>.
 
Let's call <math>r</math> as the radius of the circle that we want to find. We see that the hypotenuse of the bold right triangle is <math>\dfrac{1}{2}+r</math>, and thus <math>r</math> is <math>\boxed{\textbf{(B)} \frac{\sqrt{5}-1}{2}}</math>.

Revision as of 20:28, 27 October 2022

Problem

Eight semicircles line the inside of a square with side length 2 as shown. What is the radius of the circle tangent to all of these semicircles?

$\text{(A) } \dfrac{1+\sqrt2}4 \quad \text{(B) } \dfrac{\sqrt5-1}2 \quad \text{(C) } \dfrac{\sqrt3+1}4 \quad \text{(D) } \dfrac{2\sqrt3}5 \quad \text{(E) } \dfrac{\sqrt5}3$

[asy] scale(200); draw(scale(.5)*((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle)); path p = arc((.25,-.5),.25,0,180)--arc((-.25,-.5),.25,0,180); draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); draw(scale((sqrt(5)-1)/4)*unitcircle); [/asy]

Solution 1

We connect the centers of the circle and one of the semicircles, then draw the perpendicular from the center of the middle circle to that side, as shown.

[asy] scale(200); draw(scale(.5)*((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle)); path p = arc((.25,-.5),.25,0,180)--arc((-.25,-.5),.25,0,180); draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); p=rotate(90)*p; draw(p); draw(scale((sqrt(5)-1)/4)*unitcircle); pair OO=(0,0); pair XX=(-.25,-.5); pair YY=(0,-.5); draw(YY--OO--XX--cycle,black+1bp); label("$\frac12$",.5*(XX+YY),S); label("$1$",.5*YY,E); [/asy]

We will start by creating an equation by the Pythagorean theorem: \[\sqrt{1^2 + \left(\frac12\right)^2} = \sqrt{\frac54} = \frac{\sqrt5}{2}.\]

Solution 2 (Risky)

Let's call $r$ as the radius of the circle that we want to find. We see that the hypotenuse of the bold right triangle is $\dfrac{1}{2}+r$, and thus $r$ is $\boxed{\textbf{(B)} \frac{\sqrt{5}-1}{2}}$.

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png