Difference between revisions of "1954 AHSME Problems/Problem 32"

(Created page with "== Problem 32== The factors of <math>x^4+64</math> are: <math> \textbf{(A)}\ (x^2+8)^2\qquad\textbf{(B)}\ (x^2+8)(x^2-8)\qquad\textbf{(C)}\ (x^2+2x+4)(x^2-8x+16)\\ \textbf{...")
 
 
Line 20: Line 20:
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
So it is clear that our answer is <math>\boxed{\textbf{(E)}}</math>.
 
So it is clear that our answer is <math>\boxed{\textbf{(E)}}</math>.
 +
 +
==See Also==
 +
 +
{{AHSME 50p box|year=1954|num-b=31|num-a=33}}
 +
 +
{{MAA Notice}}

Latest revision as of 00:52, 28 February 2020

Problem 32

The factors of $x^4+64$ are:

$\textbf{(A)}\ (x^2+8)^2\qquad\textbf{(B)}\ (x^2+8)(x^2-8)\qquad\textbf{(C)}\ (x^2+2x+4)(x^2-8x+16)\\ \textbf{(D)}\ (x^2-4x+8)(x^2-4x-8)\qquad\textbf{(E)}\ (x^2-4x+8)(x^2+4x+8)$

Solution

Notice that: \begin{align*} x^4+64  &= x^4+2^6 \\ 	&= x^4+4\cdot 2^4 \end{align*}

So, using the Sophie Germain Identity, we can factor the expression as: \begin{align*} x^4+64  & = x^4+4\cdot 2^4\\ 	& = (x^2+2\cdot2^2-4x)(x^2+2\cdot2^2+4x)\\         & = (x^2-4x+8)(x^2+4x+8) \end{align*} So it is clear that our answer is $\boxed{\textbf{(E)}}$.

See Also

1954 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 31
Followed by
Problem 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png