Difference between revisions of "2002 AMC 10B Problems/Problem 20"
m (changed headers) |
(→Solution 2) |
||
Line 33: | Line 33: | ||
Therefore, <math>a^2-b^2+c^2 = 1-\frac{1}{25}+\frac{1}{25}=\boxed{1}</math> which corresponds to <math>\text{(B)}</math>. | Therefore, <math>a^2-b^2+c^2 = 1-\frac{1}{25}+\frac{1}{25}=\boxed{1}</math> which corresponds to <math>\text{(B)}</math>. | ||
− | This time-saving trick works only because we know that for any value of <math>a</math>, <math>a^2-b^2+c^2</math> will always be constant (it's a contest), | + | This time-saving trick works only because we know that for any value of <math>a</math>, <math>a^2-b^2+c^2</math> will always be constant (it's a contest), s any value of <math>a</math> will work. |
==See Also== | ==See Also== |
Revision as of 14:46, 26 March 2020
Problem
Let a, b, and c be real numbers such that and . Then is
Solution
Solution 1
Rearranging, we get and
Squaring both, and are obtained.
Adding the two equations and dividing by gives , so .
Solution 2
The easiest way is to assume a value for and then solving the system of equations. For , we get the equations
and
Multiplying the second equation by , we have
Adding up the two equations yields
, so
We obtain after plugging in the value for .
Therefore, which corresponds to .
This time-saving trick works only because we know that for any value of , will always be constant (it's a contest), s any value of will work.
See Also
2002 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.