Difference between revisions of "2020 AMC 12B Problems/Problem 15"

(Problem)
Line 4: Line 4:
  
 
<math>\textbf{(A)}\ 11 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\  13 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 15</math>
 
<math>\textbf{(A)}\ 11 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\  13 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 15</math>
 +
 +
==See Also==
 +
 +
{{AMC12 box|year=2020|ab=B|num-b=14|num-a=16}}
 +
{{MAA Notice}}

Revision as of 21:39, 7 February 2020

Problem

There are $10$ people standing equally spaced around a circle. Each person knows exactly $3$ of the other $9$ people: the $2$ people standing next to her or him,as well as the person directly across the circle. How many ways are there for the $10$ people to split up into $5$ pairs so that the members of each pair know each other?

$\textbf{(A)}\ 11 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\  13 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 15$

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png