Difference between revisions of "2020 AMC 12B Problems/Problem 12"

m (Video Solution)
Line 4: Line 4:
 
<math>\textbf{(A)}\ 96 \qquad\textbf{(B)}\ 98 \qquad\textbf{(C)}\  44\sqrt5 \qquad\textbf{(D)}\ 70\sqrt2 \qquad\textbf{(E)}\ 100</math>
 
<math>\textbf{(A)}\ 96 \qquad\textbf{(B)}\ 98 \qquad\textbf{(C)}\  44\sqrt5 \qquad\textbf{(D)}\ 70\sqrt2 \qquad\textbf{(E)}\ 100</math>
  
==Solution==
+
==Solution 1==
 
Let <math>O</math> be the center of the circle, and <math>X</math> be the midpoint of <math>\overline{CD}</math>. Let <math>CX=a</math> and <math>EX=b</math>. This implies that <math>DE = a - b</math>. Since <math>CE = CX + EX = a + b</math>, we now want to find <math>(a+b)^2+(a-b)^2=2(a^2+b^2)</math>. Since <math>\angle CXO</math> is a right angle, by Pythagorean theorem <math>a^2 + b^2 = CX^2 + OX^2 = (5\sqrt{2})^2=50</math>. Thus, our answer is <math>2(50)=\boxed{\textbf{(E) } 100}</math>.
 
Let <math>O</math> be the center of the circle, and <math>X</math> be the midpoint of <math>\overline{CD}</math>. Let <math>CX=a</math> and <math>EX=b</math>. This implies that <math>DE = a - b</math>. Since <math>CE = CX + EX = a + b</math>, we now want to find <math>(a+b)^2+(a-b)^2=2(a^2+b^2)</math>. Since <math>\angle CXO</math> is a right angle, by Pythagorean theorem <math>a^2 + b^2 = CX^2 + OX^2 = (5\sqrt{2})^2=50</math>. Thus, our answer is <math>2(50)=\boxed{\textbf{(E) } 100}</math>.
  
 
~JHawk0224
 
~JHawk0224
 +
 +
==Solution 2 (Power of a Point)==
 +
Let <math>O</math> be the center of the circle, and <math>X</math> be the midpoint of <math>CD</math>. Draw triangle <math>OCD</math>, and median <math>OX</math>. Because <math>OC = OD</math>, <math>OCD</math> is isosceles, so <math>OX</math> is also an altitude of <math>OCD</math>. <math>OD = 5\sqrt2 - 2\sqrt5</math>, and because angle <math>OEC</math> is <math>45</math> degrees and triangle <math>OXE</math> is right, <math>OX = EX = \frac{5\sqrt2 - 2\sqrt5}{\sqrt2} = 5 - \sqrt{10}</math>. Because triangle <math>OXC</math> is right, <math>CX = \sqrt{(5\sqrt2)^2 - (5 - \sqrt{10})^2} = \sqrt{15 + 10\sqrt{10}}</math>. Thus, <math>CD = 2\sqrt{15 + 10\sqrt{10}}</math>. We are looking for <math>CE^2</math> + <math>DE^2</math> which is also <math>(CE + DE)^2 - 2 \cdot CE \cdot DE</math>. Because <math>CE + DE = CD = 2\sqrt{15 + 10\sqrt{10}}, (CE + CD)^2 = 4(15 + 10\sqrt{10}) = 60 + 40\sqrt{10}</math>. By power of a point, <math>CE \cdot DE = AE \cdot EB = 2\sqrt5\cdot(10\sqrt2 - 2\sqrt5) = 20\sqrt{10} - 20</math> so <math>2 \cdot CE \cdot DE = 40\sqrt{10} - 40</math>. Finally, <math>CE^2 + DE^2 = 60 + 40\sqrt{10} - (40\sqrt{10} - 40) = \boxed{(E) 100}</math>.
 +
 +
~CT17
  
 
==Video Solution==
 
==Video Solution==

Revision as of 10:24, 8 February 2020

Problem

Let $\overline{AB}$ be a diameter in a circle of radius $5\sqrt2.$ Let $\overline{CD}$ be a chord in the circle that intersects $\overline{AB}$ at a point $E$ such that $BE=2\sqrt5$ and $\angle AEC = 45^{\circ}.$ What is $CE^2+DE^2?$

$\textbf{(A)}\ 96 \qquad\textbf{(B)}\ 98 \qquad\textbf{(C)}\  44\sqrt5 \qquad\textbf{(D)}\ 70\sqrt2 \qquad\textbf{(E)}\ 100$

Solution 1

Let $O$ be the center of the circle, and $X$ be the midpoint of $\overline{CD}$. Let $CX=a$ and $EX=b$. This implies that $DE = a - b$. Since $CE = CX + EX = a + b$, we now want to find $(a+b)^2+(a-b)^2=2(a^2+b^2)$. Since $\angle CXO$ is a right angle, by Pythagorean theorem $a^2 + b^2 = CX^2 + OX^2 = (5\sqrt{2})^2=50$. Thus, our answer is $2(50)=\boxed{\textbf{(E) } 100}$.

~JHawk0224

Solution 2 (Power of a Point)

Let $O$ be the center of the circle, and $X$ be the midpoint of $CD$. Draw triangle $OCD$, and median $OX$. Because $OC = OD$, $OCD$ is isosceles, so $OX$ is also an altitude of $OCD$. $OD = 5\sqrt2 - 2\sqrt5$, and because angle $OEC$ is $45$ degrees and triangle $OXE$ is right, $OX = EX = \frac{5\sqrt2 - 2\sqrt5}{\sqrt2} = 5 - \sqrt{10}$. Because triangle $OXC$ is right, $CX = \sqrt{(5\sqrt2)^2 - (5 - \sqrt{10})^2} = \sqrt{15 + 10\sqrt{10}}$. Thus, $CD = 2\sqrt{15 + 10\sqrt{10}}$. We are looking for $CE^2$ + $DE^2$ which is also $(CE + DE)^2 - 2 \cdot CE \cdot DE$. Because $CE + DE = CD = 2\sqrt{15 + 10\sqrt{10}}, (CE + CD)^2 = 4(15 + 10\sqrt{10}) = 60 + 40\sqrt{10}$. By power of a point, $CE \cdot DE = AE \cdot EB = 2\sqrt5\cdot(10\sqrt2 - 2\sqrt5) = 20\sqrt{10} - 20$ so $2 \cdot CE \cdot DE = 40\sqrt{10} - 40$. Finally, $CE^2 + DE^2 = 60 + 40\sqrt{10} - (40\sqrt{10} - 40) = \boxed{(E) 100}$.

~CT17

Video Solution

On The Spot STEM: https://www.youtube.com/watch?v=h-hhRa93lK4

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png