Difference between revisions of "2020 AMC 12B Problems/Problem 18"
Runyangwang (talk | contribs) |
Runyangwang (talk | contribs) |
||
Line 55: | Line 55: | ||
Solving for <math>y^2</math> gives <math>\boxed{\textbf{(B)}\ 8-4\sqrt{2}}</math> ~DrB | Solving for <math>y^2</math> gives <math>\boxed{\textbf{(B)}\ 8-4\sqrt{2}}</math> ~DrB | ||
+ | ==Solution 3(HARD Calculation)(Not Completed yet)== | ||
+ | |||
+ | We can easily observe that the area of square <math>ABCD</math> is 4 and its side length is 2 since all four regions that build up the square has area 1. | ||
+ | Extend <math>FI</math> and let the intersection with <math>AB</math> be <math>K</math>. Connect <math>AC</math>, and let the intersection of <math>AC</math> and <math>HE</math> be <math>L</math> | ||
+ | Notice that since the area of triangle <math>AEH</math> is 1 and <math>AE=AH</math> , <math>AE=AH=\sqrt{2}</math>, therefore <math>BE=HD=2-\sqrt{2}</math> | ||
{{AMC12 box|year=2020|ab=B|num-b=17|num-a=19}} | {{AMC12 box|year=2020|ab=B|num-b=17|num-a=19}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 01:47, 9 February 2020
In square , points and lie on and , respectively, so that Points and lie on and , respectively, and points and lie on so that and . See the figure below. Triangle , quadrilateral , quadrilateral , and pentagon each has area What is ?
Solution 1
Plot a point such that and are collinear and extend line to point such that forms a square. Extend line to meet line and point is the intersection of the two. The area of this square is equivalent to . We see that the area of square is , meaning each side is of length 2. The area of the pentagon is . Length , thus . Triangle is isosceles, and the area of this triangle is . Adding these two areas, we get . --OGBooger
Solution 2
Draw the auxiliary line . Denote by the point it intersects with , and by the point it intersects with . Last, denote by the segment , and by the segment . We will find two equations for and , and then solve for .
Since the overall area of is , and . In addition, the area of .
The two equations for and are then:
Length of :
Area of CMIF: .
Substituting the first into the second, yields
Solving for gives ~DrB
Solution 3(HARD Calculation)(Not Completed yet)
We can easily observe that the area of square is 4 and its side length is 2 since all four regions that build up the square has area 1. Extend and let the intersection with be . Connect , and let the intersection of and be Notice that since the area of triangle is 1 and , , therefore
2020 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.