Difference between revisions of "1985 AIME Problems/Problem 1"
m (box) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let <math>x_1=97</math>, and for <math>n>1</math> let<math>x_n=\frac{n}{x_{n-1}}</math>. Calculate the product <math>x_1x_2x_3x_4x_5x_6x_7x_8</math>. | + | Let <math>x_1=97</math>, and for <math>n>1</math> let<math>x_n=\frac{n}{x_{n-1}}</math>. Calculate the [[product]] <math>x_1x_2x_3x_4x_5x_6x_7x_8</math>. |
+ | |||
==Solution== | ==Solution== | ||
Since <math>x_n=\frac{n}{x_{n-1}}</math>, <math>x_n \cdot x_{n - 1} = n</math>. Setting <math>n = 2, 4, 6</math> and <math>8</math> in this equation gives us respectively <math>x_1x_2 = 2</math>, <math>x_3x_4 = 4</math>, <math>x_5x_6 = 6</math> and <math>x_7x_8 = 8</math> so <math>x_1x_2x_3x_4x_5x_6x_7x_8 = 2\cdot4\cdot6\cdot8 = 384</math>. | Since <math>x_n=\frac{n}{x_{n-1}}</math>, <math>x_n \cdot x_{n - 1} = n</math>. Setting <math>n = 2, 4, 6</math> and <math>8</math> in this equation gives us respectively <math>x_1x_2 = 2</math>, <math>x_3x_4 = 4</math>, <math>x_5x_6 = 6</math> and <math>x_7x_8 = 8</math> so <math>x_1x_2x_3x_4x_5x_6x_7x_8 = 2\cdot4\cdot6\cdot8 = 384</math>. | ||
− | |||
− | |||
− | + | ==See also== | |
+ | {{AIME box|year=1985|before=First Question|num-a=2}} | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] |
Revision as of 15:54, 6 March 2007
Problem
Let , and for let. Calculate the product .
Solution
Since , . Setting and in this equation gives us respectively , , and so .
See also
1985 AIME (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |