Difference between revisions of "2016 AMC 12B Problems/Problem 22"

m (Problem)
m
Line 1: Line 1:
=Problem=
+
==Problem==
  
 
For a certain positive integer <math>n</math> less than <math>1000</math>, the decimal equivalent of <math>\frac{1}{n}</math> is <math>0.\overline{abcdef}</math>, a repeating decimal of period of <math>6</math>, and the decimal equivalent of <math>\frac{1}{n+6}</math> is <math>0.\overline{wxyz}</math>, a repeating decimal of period <math>4</math>. In which interval does <math>n</math> lie?
 
For a certain positive integer <math>n</math> less than <math>1000</math>, the decimal equivalent of <math>\frac{1}{n}</math> is <math>0.\overline{abcdef}</math>, a repeating decimal of period of <math>6</math>, and the decimal equivalent of <math>\frac{1}{n+6}</math> is <math>0.\overline{wxyz}</math>, a repeating decimal of period <math>4</math>. In which interval does <math>n</math> lie?
Line 6: Line 6:
 
[[Category: Intermediate Number Theory Problems]]
 
[[Category: Intermediate Number Theory Problems]]
  
=Solution=
+
==Solution==
 
Solution by e_power_pi_times_i
 
Solution by e_power_pi_times_i
  

Revision as of 00:54, 28 July 2020

Problem

For a certain positive integer $n$ less than $1000$, the decimal equivalent of $\frac{1}{n}$ is $0.\overline{abcdef}$, a repeating decimal of period of $6$, and the decimal equivalent of $\frac{1}{n+6}$ is $0.\overline{wxyz}$, a repeating decimal of period $4$. In which interval does $n$ lie?

$\textbf{(A)}\ [1,200]\qquad\textbf{(B)}\ [201,400]\qquad\textbf{(C)}\ [401,600]\qquad\textbf{(D)}\ [601,800]\qquad\textbf{(E)}\ [801,999]$

Solution

Solution by e_power_pi_times_i

If $\frac{1}{n} = 0.\overline{abcdef}$, $n$ must be a factor of $999999$. Also, by the same procedure, $n+6$ must be a factor of $9999$. Checking through all the factors of $999999$ and $9999$ that are less than $1000$, we see that $n = 297$ is a solution, so the answer is $\boxed{\textbf{(B)}}$.

Note: $n = 27$ and $n = 3$ are both solutions, which invalidates this method. However, we need to examine all factors of $999999$ that are not factors of $99999$, $999$, or $99$, or $9$. Additionally, we need $n+6$ to be a factor of $9999$ but not $999$, $99$, or $9$. Indeed, $297$ satisfies these requirements.

We can see that $n=27$ and $n=3$ are not solutions by checking it in the requirements of the problem: $\frac{1}{3}=0.3333\dots$, period 1, and $\frac{1}{27}=0.037037\dots$, period 3. Thus, $n=297$ is the only answer.

For anyone who wants more information about repeating decimals, visit: https://en.wikipedia.org/wiki/Repeating_decimal

See Also

2016 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png