Difference between revisions of "2004 AIME I Problems/Problem 4"
I like pie (talk | contribs) m (AIME box) |
|||
Line 7: | Line 7: | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=2004|n=I|num-b=3|num-a=5}} | |
− | |||
− | |||
− | |||
− | |||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] |
Revision as of 15:00, 27 April 2008
Problem
A square has sides of length 2. Set is the set of all line segments that have length 2 and whose endpoints are on adjacent sides of the square. The midpoints of the line segments in set enclose a region whose area to the nearest hundredth is . Find .
Solution
Without loss of generality, let , , , and be the vertices of the square. Suppose the endpoints of the segment lie on the two sides of the square determined by the vertex . Let the two endpoints of the segment have coordinates and . Because the segment has length 2, . Using the midpoint formula, we find that the midpoint of the segment has coordinates . Let be the distance from to . Using the distance formula we see that . Thus the midpoints lying on the sides determined by vertex form a quarter-circle with radius 1. The set of all midpoints forms a quarter circle at each corner of the square. The area enclosed by all of the midpoints is to the nearest hundredth. Thus
See also
2004 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |