Difference between revisions of "2020 AMC 12A Problems/Problem 24"
Siluweston (talk | contribs) (→Solution 3 (Answer Choices)) |
Siluweston (talk | contribs) (→Solution 3 (Answer Choices)) |
||
Line 107: | Line 107: | ||
<cmath>\sqrt{10s^2-s^4-9}+\sqrt{8s^2-s^4-4}+\sqrt{14s^2-s^4-1} = \sqrt{3}s^2</cmath> | <cmath>\sqrt{10s^2-s^4-9}+\sqrt{8s^2-s^4-4}+\sqrt{14s^2-s^4-1} = \sqrt{3}s^2</cmath> | ||
− | Note that from now on, the algebra will get extremely ugly and almost impossible to do by hand within the time frame. However, we do see that it's extremely easy to check the answer choices with the equation in this form. Testing <math>\sqrt{7}</math>, We obtain <math>7\sqrt{3}</math> on both sides, revealing that our answer is in fact <math>\boxed{\textbf{(B) } \sqrt{7}}</math> | + | Note that from now on, the algebra will get extremely ugly and almost impossible to do by hand within the time frame. However, we do see that it's extremely easy to check the answer choices with the equation in this form. Testing <math>s = \sqrt{7}</math>, We obtain <math>7\sqrt{3}</math> on both sides, revealing that our answer is in fact <math>\boxed{\textbf{(B) } \sqrt{7}}</math> |
~ siluweston | ~ siluweston |
Revision as of 13:09, 16 March 2020
Contents
Problem 24
Suppose that is an equilateral triangle of side length , with the property that there is a unique point inside the triangle such that , , and . What is ?
Solution 1
We begin by rotating by about , such that in , . We see that is equilateral with side length , meaning that . We also see that is a right triangle, meaning that . Thus, by adding the two together, we see that . We can now use the law of cosines as following:
giving us that . ~ciceronii
Solution 2 (Intuition)
Suppose that triangle had three segments of length , emanating from each of its vertices, making equal angles with each of its sides, and going into its interior. Suppose each of these segments intersected the segment clockwise to it precisely at its other endpoint and inside (as pictured in the diagram above). Clearly and the triangle defined by these intersection points will be equilateral (pictured by the blue segments).
Take this equilateral triangle to have side length . The portions of each segment outside this triangle (in red) have length . Take to be the intersection of the segments emanating from and . By Law of Cosines, So, actually satisfies the conditions of the problem, and we can obtain again by Law of Cosines
~ hnkevin42
Solution 3 (Answer Choices)
We begin by dropping altitudes from point down to all three sides of the triangle as shown above. We can therefore make equations regarding the areas of triangles , , and . Let be the side of the equilateral triangle, we use the Heron's formula:
Similarly, we obtain:
By Viviani's theorem,
Note that from now on, the algebra will get extremely ugly and almost impossible to do by hand within the time frame. However, we do see that it's extremely easy to check the answer choices with the equation in this form. Testing , We obtain on both sides, revealing that our answer is in fact
~ siluweston
Video Solution
https://www.youtube.com/watch?v=mUW4zcrRL54
See Also
2020 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.