Difference between revisions of "2003 AIME II Problems/Problem 9"

(Solution 2)
m (Solution)
Line 22: Line 22:
  
 
So finally
 
So finally
<math>P(z_2)+P(z_1)+P(z_3)+P(z_4)=3+4-1=\boxed{6}</math>
+
<math>P(z_2)+P(z_1)+P(z_3)+P(z_4)=3+4-1=\boxed{6}.</math>
 
 
  
 
== Solution 2 ==
 
== Solution 2 ==

Revision as of 20:45, 2 July 2020

Problem

Consider the polynomials $P(x) = x^{6} - x^{5} - x^{3} - x^{2} - x$ and $Q(x) = x^{4} - x^{3} - x^{2} - 1.$ Given that $z_{1},z_{2},z_{3},$ and $z_{4}$ are the roots of $Q(x) = 0,$ find $P(z_{1}) + P(z_{2}) + P(z_{3}) + P(z_{4}).$

Solution

When we use long division to divide $P(x)$ by $Q(x)$, the remainder is $x^2-x+1$.

So, since $z_1$ is a root, $P(z_1)=(z_1)^2-z_1+1$.

Now this also follows for all roots of $Q(x)$ Now \[P(z_2)+P(z_1)+P(z_3)+P(z_4)=z_1^2-z_1+1+z_2^2-z_2+1+z_3^2-z_3+1+z_4^2-z_4+1\]

Now by Vieta's we know that $-z_4-z_3-z_2-z_1=-1$, so by Newton Sums we can find $z_1^2+z_2^2+z_3^2+z_4^2$

$a_ns_2+a_{n-1}s_1+2a_{n-2}=0$

$(1)(s_2)+(-1)(1)+2(-1)=0$

$s_2-1-2=0$

$s_2=3$

So finally $P(z_2)+P(z_1)+P(z_3)+P(z_4)=3+4-1=\boxed{6}.$

Solution 2

Let $S_k=z_1^k+z_2^k+z_3^k+z_4^k$ then by Vieta's Formula we have \[S_{-1}=\frac{z_1z_2z_3+z_1z_3z_4+z_1z_2z_4+z_1z_2z_3}{z_1z_2z_3z_4}=0\] \[S_0=4\] \[S_1=1\] \[S_2=3\] By Newton's Sums we have \[a_4S_k+a_3S_{k-1}+a_2S_{k-2}+a_1S_{k-1}+a_0S_{k-4}=0\]

Applying the formula couples of times yields $P(z_1)+P(z_2)+P(z_3)+P(z_4)=S_6-S_5-S_3-S_2-S_1=\boxed{6}$.

~ Nafer

See also

2003 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png