Difference between revisions of "2015 AMC 10A Problems/Problem 23"
(→Video Solution by Richard Rusczyk) |
|||
Line 26: | Line 26: | ||
https://artofproblemsolving.com/videos/amc/2015amc10a/397 | https://artofproblemsolving.com/videos/amc/2015amc10a/397 | ||
− | |||
− | |||
==See Also== | ==See Also== |
Revision as of 11:04, 29 November 2020
Problem
The zeroes of the function are integers. What is the sum of the possible values of
Solution 1
By Vieta's Formula, is the sum of the integral zeros of the function, and so is integral.
Because the zeros are integral, the discriminant of the function, , is a perfect square, say . Then adding 16 to both sides and completing the square yields Therefore and Let and ; then, and so . Listing all possible pairs (not counting transpositions because this does not affect (), , yields . These sum to , so our answer is .
Solution 2
Let and be the integer zeroes of the quadratic. Since the coefficient of the term is , the quadratic can be written as
By comparing this with ,
Plugging the first equation in the second, Rearranging gives These factors can be or
We want the number of distinct , and these factors gives . So the answer is .
Video Solution by Richard Rusczyk
https://artofproblemsolving.com/videos/amc/2015amc10a/397
See Also
2015 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.