Difference between revisions of "2006 AIME I Problems/Problem 5"

m (fix typos, box)
(Solution)
Line 7: Line 7:
  
 
== Solution ==
 
== Solution ==
We begin by [[equate | equating]] the two expressions:
 
  
<math> a\sqrt{2}+b\sqrt{3}+c\sqrt{5} = \sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}</math>
+
For now, assume that face <math>F</math> has a 6, so the opposite face has a 1.  Let <math>A(n)</math> be the probability of rolling a number <math>n</math> on one die and let <math>B(n)</math> be the probability of rolling a number <math>n</math> on the other die. 7 can be obtained by rolling a <math>A(n)=2</math> and <math>B(n)=5</math>, 5 and 2, 3 and 4, or 4 and 3. Each has a probability of <math>\frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}</math>, totaling <math>4 \cdot \frac{1}{36} = \frac{1}{9}</math>. Subtracting all these probabilities from <math>\frac{47}{288}</math> leaves <math>\frac{15}{288}=\frac{5}{96}</math> chance of getting a 1 on die <math>A</math> and a 6 on die <math>B</math> or a 6 on die <math>A</math> and a 1 on die <math>B</math>:
  
Squaring both sides yeilds:
+
<math>A(6)\cdot B(1)+B(6)\cdot A(1)=\frac{5}{96}</math>
  
<math> 2ab\sqrt{6} + 2ac\sqrt{10} + 2bc\sqrt{15} + 2a^2 + 3b^2 + 5c^2 = 104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006 </math>  
+
Since the two dice are identical, <math>B(1)=A(1)</math> and <math>B(6)=A(6)</math> so
  
Since <math>a</math>, <math>b</math>, and <math>c</math> are integers:
+
:<math>A(1)\cdot A(6)+A(1)\cdot A(6)=\frac{5}{96}</math>
 +
:<math>A(1)\cdot A(6)=\frac{5}{192}</math>
  
1: <math> 2ab\sqrt{6} = 104\sqrt{6} </math>  
+
Also, we know that <math>A(2)=A(3)=A(4)=A(5)=\frac{1}{6}</math> and that the total probability must be <math>1</math>, so:
  
2: <math> 2ac\sqrt{10} = 468\sqrt{10} </math>
+
:<math>A(1)+4 \cdot \frac{1}{6}+A(6)=\frac{6}{6}</math>
 +
:<math>A(1)+A(6)=\frac{1}{3}</math>
  
3: <math> 2bc\sqrt{15} = 144\sqrt{15} </math>
+
Combining the equations:
  
4: <math> 2a^2 + 3b^2 + 5c^2 = 2006 </math>  
+
:<math>A(6)\cdot(\frac{1}{3}-A(6))=\frac{5}{192}</math>
  
Solving the first three equations gives:  
+
:<math>\frac{A(6)}{3}-A(6)^2=\frac{5}{192}</math>
  
<math> ab = 52 </math>  
+
:<math>A(6)^2-\frac{A(6)}{3}+\frac{5}{192}=0</math>
  
<math> ac = 234 </math>  
+
:<math>192 A(6)^2 - 64 A(6) + 5 = 0</math>
  
<math> bc = 72 </math>  
+
:<math>A(6)=\frac{64\pm\sqrt{64^2 - 4 \cdot 5 \cdot 192}}{2\cdot192}</math>
  
Multiplying these equations gives:  
+
:<math>A(6)=\frac{64\pm16}{384}</math>
  
<math> (abc)^2 = 52 \cdot 234 \cdot 72</math>
+
:<math>A(6)=\frac{5}{24}, \frac{1}{8}</math>
  
<math> abc = \sqrt{52 \cdot 234 \cdot 72} = 936</math>
+
We know that <math>A(6)>\frac{1}{6}</math>, so it can't be <math>\frac{1}{8}</math>.  Therefore, it has to be <math>\frac{5}{24}</math> and the answer is <math>5+24=29</math>.
  
If it was required to solve for each variable, dividing the product of the three variables by the product of any two variables would yield the third variable. Doing so yields:
+
Note also that the initial assumption that face <math>F</math> was the face labelled 6 is unnecessary -- we would have carried out exactly the same steps and found exactly the same probability no matter which face it was.
 
 
<math>a=13</math>
 
 
 
<math>b=4</math>
 
 
 
<math>c=18</math>
 
 
 
Which clearly fits the fourth equation:
 
<math> 2 \cdot 13^2 + 3 \cdot 4^2 + 5 \cdot 18^2 = 2006 </math>
 
  
 
== See also ==
 
== See also ==

Revision as of 13:08, 25 September 2007

Problem

The number $\sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}$ can be written as $a\sqrt{2}+b\sqrt{3}+c\sqrt{5},$ where $a, b,$ and $c$ are positive integers. Find $abc$.



Solution

For now, assume that face $F$ has a 6, so the opposite face has a 1. Let $A(n)$ be the probability of rolling a number $n$ on one die and let $B(n)$ be the probability of rolling a number $n$ on the other die. 7 can be obtained by rolling a $A(n)=2$ and $B(n)=5$, 5 and 2, 3 and 4, or 4 and 3. Each has a probability of $\frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$, totaling $4 \cdot \frac{1}{36} = \frac{1}{9}$. Subtracting all these probabilities from $\frac{47}{288}$ leaves $\frac{15}{288}=\frac{5}{96}$ chance of getting a 1 on die $A$ and a 6 on die $B$ or a 6 on die $A$ and a 1 on die $B$:

$A(6)\cdot B(1)+B(6)\cdot A(1)=\frac{5}{96}$

Since the two dice are identical, $B(1)=A(1)$ and $B(6)=A(6)$ so

$A(1)\cdot A(6)+A(1)\cdot A(6)=\frac{5}{96}$
$A(1)\cdot A(6)=\frac{5}{192}$

Also, we know that $A(2)=A(3)=A(4)=A(5)=\frac{1}{6}$ and that the total probability must be $1$, so:

$A(1)+4 \cdot \frac{1}{6}+A(6)=\frac{6}{6}$
$A(1)+A(6)=\frac{1}{3}$

Combining the equations:

$A(6)\cdot(\frac{1}{3}-A(6))=\frac{5}{192}$
$\frac{A(6)}{3}-A(6)^2=\frac{5}{192}$
$A(6)^2-\frac{A(6)}{3}+\frac{5}{192}=0$
$192 A(6)^2 - 64 A(6) + 5 = 0$
$A(6)=\frac{64\pm\sqrt{64^2 - 4 \cdot 5 \cdot 192}}{2\cdot192}$
$A(6)=\frac{64\pm16}{384}$
$A(6)=\frac{5}{24}, \frac{1}{8}$

We know that $A(6)>\frac{1}{6}$, so it can't be $\frac{1}{8}$. Therefore, it has to be $\frac{5}{24}$ and the answer is $5+24=29$.

Note also that the initial assumption that face $F$ was the face labelled 6 is unnecessary -- we would have carried out exactly the same steps and found exactly the same probability no matter which face it was.

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions