Difference between revisions of "2020 AMC 12A Problems/Problem 6"

Line 29: Line 29:
 
<math>\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8</math>
 
<math>\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8</math>
  
== Solution ==
+
== Solution 1 (Graphical) ==
  
 
The two lines of symmetry must be horizontally and vertically through the middle. We can then fill the boxes in like so:
 
The two lines of symmetry must be horizontally and vertically through the middle. We can then fill the boxes in like so:
Line 65: Line 65:
  
 
where the light gray boxes are the ones we have filled. Counting these, we get <math>\boxed{\textbf{(D) } 7}</math> total boxes. ~ciceronii
 
where the light gray boxes are the ones we have filled. Counting these, we get <math>\boxed{\textbf{(D) } 7}</math> total boxes. ~ciceronii
 +
 +
==Solution 2 (Analytical)==
 +
We label the three shaded unit squares <math>A,B,</math> and <math>C,</math> then construct the two lines of symmetry of the resulting figure, as shown below:
 +
<asy>
 +
import olympiad;
 +
unitsize(25);
 +
filldraw((1,3)--(1,4)--(2,4)--(2,3)--cycle, gray(0.7));
 +
filldraw((2,1)--(2,2)--(3,2)--(3,1)--cycle, gray(0.7));
 +
filldraw((4,0)--(5,0)--(5,1)--(4,1)--cycle, gray(0.7));
 +
for (int i = 0; i < 5; ++i) {
 +
for (int j = 0; j < 6; ++j) {
 +
pair A = (j,i);
 +
}
 +
}
 +
for (int i = 0; i < 5; ++i) {
 +
for (int j = 0; j < 6; ++j) {
 +
if (j != 5) {
 +
draw((j,i)--(j+1,i));
 +
}
 +
if (i != 4) {
 +
draw((j,i)--(j,i+1));
 +
}
 +
}
 +
}
 +
draw((-1,2)--(6,2),dashed+linewidth(2));
 +
draw((2.5,-1)--(2.5,5),dashed+linewidth(2));
 +
label("$A$",(1.5,3.5));
 +
label("$B$",(2.5,1.5));
 +
label("$C$",(4.5,0.5));
 +
</asy>
 +
 +
<b>SOLUTION IN PROGRESS, I WILL RETURN</b>
 +
 +
~MRENTHUSIASM
  
 
==Video Solution==
 
==Video Solution==

Revision as of 06:38, 26 April 2021

Problem

In the plane figure shown below, $3$ of the unit squares have been shaded. What is the least number of additional unit squares that must be shaded so that the resulting figure has two lines of symmetry?

[asy] import olympiad; unitsize(25); filldraw((1,3)--(1,4)--(2,4)--(2,3)--cycle, gray(0.7)); filldraw((2,1)--(2,2)--(3,2)--(3,1)--cycle, gray(0.7)); filldraw((4,0)--(5,0)--(5,1)--(4,1)--cycle, gray(0.7)); for (int i = 0; i < 5; ++i) { for (int j = 0; j < 6; ++j) { pair A = (j,i);  } } for (int i = 0; i < 5; ++i) { for (int j = 0; j < 6; ++j) { if (j != 5) { draw((j,i)--(j+1,i)); } if (i != 4) { draw((j,i)--(j,i+1)); } } } [/asy]

$\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8$

Solution 1 (Graphical)

The two lines of symmetry must be horizontally and vertically through the middle. We can then fill the boxes in like so:

[asy] import olympiad; unitsize(25); filldraw((1,3)--(1,4)--(2,4)--(2,3)--cycle, gray(0.7)); filldraw((0,3)--(0,4)--(1,4)--(1,3)--cycle, gray(0.9)); filldraw((3,3)--(3,4)--(4,4)--(4,3)--cycle, gray(0.9)); filldraw((4,3)--(4,4)--(5,4)--(5,3)--cycle, gray(0.9)); filldraw((2,2)--(2,3)--(3,3)--(3,2)--cycle, gray(0.9)); filldraw((2,1)--(2,2)--(3,2)--(3,1)--cycle, gray(0.7)); filldraw((3,0)--(4,0)--(4,1)--(3,1)--cycle, gray(0.9)); filldraw((1,0)--(2,0)--(2,1)--(1,1)--cycle, gray(0.9)); filldraw((4,0)--(5,0)--(5,1)--(4,1)--cycle, gray(0.7)); filldraw((0,0)--(1,0)--(1,1)--(0,1)--cycle, gray(0.9)); for (int i = 0; i < 5; ++i) { for (int j = 0; j < 6; ++j) { pair A = (j,i);  } } for (int i = 0; i < 5; ++i) { for (int j = 0; j < 6; ++j) { if (j != 5) { draw((j,i)--(j+1,i)); } if (i != 4) { draw((j,i)--(j,i+1)); } } } [/asy]

where the light gray boxes are the ones we have filled. Counting these, we get $\boxed{\textbf{(D) } 7}$ total boxes. ~ciceronii

Solution 2 (Analytical)

We label the three shaded unit squares $A,B,$ and $C,$ then construct the two lines of symmetry of the resulting figure, as shown below: [asy] import olympiad; unitsize(25); filldraw((1,3)--(1,4)--(2,4)--(2,3)--cycle, gray(0.7)); filldraw((2,1)--(2,2)--(3,2)--(3,1)--cycle, gray(0.7)); filldraw((4,0)--(5,0)--(5,1)--(4,1)--cycle, gray(0.7)); for (int i = 0; i < 5; ++i) { for (int j = 0; j < 6; ++j) { pair A = (j,i); } } for (int i = 0; i < 5; ++i) { for (int j = 0; j < 6; ++j) { if (j != 5) { draw((j,i)--(j+1,i)); } if (i != 4) { draw((j,i)--(j,i+1)); } } } draw((-1,2)--(6,2),dashed+linewidth(2)); draw((2.5,-1)--(2.5,5),dashed+linewidth(2)); label("$A$",(1.5,3.5)); label("$B$",(2.5,1.5)); label("$C$",(4.5,0.5)); [/asy]

SOLUTION IN PROGRESS, I WILL RETURN

~MRENTHUSIASM

Video Solution

https://youtu.be/fzZzGqNqW6U

~IceMatrix

See Also

2020 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png