Difference between revisions of "2007 AMC 8 Problems/Problem 10"

(Made the solution more direct and formatted.)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
For any positive integer <math>n</math>, <math>\boxed{n}</math> to be the sum of the positive factors of <math>n</math>.
+
For any positive integer <math>n</math>, define <math>\boxed{n}</math> to be the sum of the positive factors of <math>n</math>.
 
For example, <math>\boxed{6} = 1 + 2 + 3 + 6 = 12</math>. Find <math>\boxed{\boxed{11}}</math> .
 
For example, <math>\boxed{6} = 1 + 2 + 3 + 6 = 12</math>. Find <math>\boxed{\boxed{11}}</math> .
  
<math>\mathrm{(A)}\ 13 \qquad \mathrm{(B)}\ 20 \qquad \mathrm{(C)}\ 24 \qquad \mathrm{(D)}\ 28 \qquad \mathrm{(E)}\ 30</math>
+
<math>\textbf{(A)}\ 13 \qquad \textbf{(B)}\ 20 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 28 \qquad \textbf{(E)}\ 30</math>
  
 
== Solution ==
 
== Solution ==
 +
We have
 +
<cmath>\begin{align*}
 +
\boxed{\boxed{11}}&=\boxed{1+11} \\
 +
&=\boxed{12} \\
 +
&=1+2+3+4+6+12 \\
 +
&=28,
 +
\end{align*}</cmath>
 +
from which the answer is <math>\boxed{\textbf{(D)}\ 28}.</math>
  
First we find <math>\boxed{11}</math>.
+
~Aplus95 (Fundamental Logic)
  
<math>\boxed{11} = 1 + 11 = 12</math>
+
~MRENTHUSIASM (Reconstruction)
 
 
Then we find <math>\boxed{12}</math>.
 
 
 
<math>\boxed{\boxed{11}} = \boxed{12} = 1 + 2 + 3 + 4 + 6 + 12 = \boxed{\textbf{(D)}\ 28}</math>
 
  
 
==Video Solution by WhyMath==
 
==Video Solution by WhyMath==

Revision as of 14:04, 15 July 2021

Problem

For any positive integer $n$, define $\boxed{n}$ to be the sum of the positive factors of $n$. For example, $\boxed{6} = 1 + 2 + 3 + 6 = 12$. Find $\boxed{\boxed{11}}$ .

$\textbf{(A)}\ 13 \qquad \textbf{(B)}\ 20 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 28 \qquad \textbf{(E)}\ 30$

Solution

We have \begin{align*} \boxed{\boxed{11}}&=\boxed{1+11} \\ &=\boxed{12} \\ &=1+2+3+4+6+12 \\ &=28, \end{align*} from which the answer is $\boxed{\textbf{(D)}\ 28}.$

~Aplus95 (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Video Solution by WhyMath

https://youtu.be/Ih8lEBwPqEY

~savannahsolver

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png