Difference between revisions of "2021 AMC 10B Problems/Problem 13"

m (Added in the "See Also" and MAA Notice.)
m
Line 4: Line 4:
 
<math>\textbf{(A)} ~10 \qquad\textbf{(B)} ~11 \qquad\textbf{(C)} ~13 \qquad\textbf{(D)} ~15 \qquad\textbf{(E)} ~16</math>
 
<math>\textbf{(A)} ~10 \qquad\textbf{(B)} ~11 \qquad\textbf{(C)} ~13 \qquad\textbf{(D)} ~15 \qquad\textbf{(E)} ~16</math>
  
==Solution==
+
==Solution 1==
 
We can start by setting up an equation to convert <math>\underline{32d}</math> base <math>n</math> to base 10. To convert this to base 10, it would be <math>3{n}^2+2n+d.</math> Because it is equal to 263, we can set this equation to 263. Finally, subtract <math>d</math> from both sides to get <math>3{n}^2+2n = 263-d</math>.
 
We can start by setting up an equation to convert <math>\underline{32d}</math> base <math>n</math> to base 10. To convert this to base 10, it would be <math>3{n}^2+2n+d.</math> Because it is equal to 263, we can set this equation to 263. Finally, subtract <math>d</math> from both sides to get <math>3{n}^2+2n = 263-d</math>.
 
  
 
We can also set up equations to convert <math>\underline{324}</math> base <math>n</math> and <math>\underline{11d1}</math> base 6 to base 10. The equation to covert <math>\underline{324}</math> base <math>n</math> to base 10 is <math>3{n}^2+2n+4.</math> The equation to convert <math>\underline{11d1}</math> base 6 to base 10 is <math>{6}^3+{6}^2+6d+1.</math>
 
We can also set up equations to convert <math>\underline{324}</math> base <math>n</math> and <math>\underline{11d1}</math> base 6 to base 10. The equation to covert <math>\underline{324}</math> base <math>n</math> to base 10 is <math>3{n}^2+2n+4.</math> The equation to convert <math>\underline{11d1}</math> base 6 to base 10 is <math>{6}^3+{6}^2+6d+1.</math>
 
  
 
Simplify <math>{6}^3+{6}^2+6d+1</math> so it becomes <math>6d+253.</math> Setting the above equations equal to each other, we have  
 
Simplify <math>{6}^3+{6}^2+6d+1</math> so it becomes <math>6d+253.</math> Setting the above equations equal to each other, we have  
Line 19: Line 17:
 
<cmath>3{n}^2+2n = 6d+249</cmath>
 
<cmath>3{n}^2+2n = 6d+249</cmath>
 
to solve for <math>d</math>. Set <math>263-d</math> equal to <math>6d+249</math> and solve to find that <math>d=2</math>.
 
to solve for <math>d</math>. Set <math>263-d</math> equal to <math>6d+249</math> and solve to find that <math>d=2</math>.
 
  
 
Plug <math>d=2</math> back into the equation <math>3{n}^2+2n = 263-d</math>. Subtract 261 from both sides to get your final equation of <math>3{n}^2+2n-261 = 0.</math> Solve using the quadratic formula to find that the solutions are 9 and -10. Because the base must be positive, <math>n=9.</math>
 
Plug <math>d=2</math> back into the equation <math>3{n}^2+2n = 263-d</math>. Subtract 261 from both sides to get your final equation of <math>3{n}^2+2n-261 = 0.</math> Solve using the quadratic formula to find that the solutions are 9 and -10. Because the base must be positive, <math>n=9.</math>
  
Adding 2 to 9 gets <math>\boxed{\textbf{(B)}11}</math>
+
Adding 2 to 9 gets <math>\boxed{\textbf{(B)} ~11}</math>
<br><br>
 
  
 
-Zeusthemoose (edited for readability)
 
-Zeusthemoose (edited for readability)
  
 
==Solution 2==
 
==Solution 2==
<math>32d</math> is greater than <math>263</math> when both are interpreted in base 10, so <math>n</math> is less than <math>10</math>. Some trial and error gives <math>n=9</math>. <math>263</math> in base 9 is <math>322</math>, so the answer is <math>9+2=\boxed{\textbf{(B)}11}</math>.  
+
<math>32d</math> is greater than <math>263</math> when both are interpreted in base 10, so <math>n</math> is less than <math>10</math>. Some trial and error gives <math>n=9</math>. <math>263</math> in base 9 is <math>322</math>, so the answer is <math>9+2=\boxed{\textbf{(B)} ~11}</math>.  
  
 
-SmileKat32
 
-SmileKat32

Revision as of 05:50, 12 June 2021

Problem

Let $n$ be a positive integer and $d$ be a digit such that the value of the numeral $\underline{32d}$ in base $n$ equals $263$, and the value of the numeral $\underline{324}$ in base $n$ equals the value of the numeral $\underline{11d1}$ in base six. What is $n + d ?$

$\textbf{(A)} ~10 \qquad\textbf{(B)} ~11 \qquad\textbf{(C)} ~13 \qquad\textbf{(D)} ~15 \qquad\textbf{(E)} ~16$

Solution 1

We can start by setting up an equation to convert $\underline{32d}$ base $n$ to base 10. To convert this to base 10, it would be $3{n}^2+2n+d.$ Because it is equal to 263, we can set this equation to 263. Finally, subtract $d$ from both sides to get $3{n}^2+2n = 263-d$.

We can also set up equations to convert $\underline{324}$ base $n$ and $\underline{11d1}$ base 6 to base 10. The equation to covert $\underline{324}$ base $n$ to base 10 is $3{n}^2+2n+4.$ The equation to convert $\underline{11d1}$ base 6 to base 10 is ${6}^3+{6}^2+6d+1.$

Simplify ${6}^3+{6}^2+6d+1$ so it becomes $6d+253.$ Setting the above equations equal to each other, we have \[3{n}^2+2n+4 = 6d+253.\] Subtracting 4 from both sides gets $3{n}^2+2n = 6d+249.$

We can then use equations \[3{n}^2+2n = 263-d\] \[3{n}^2+2n = 6d+249\] to solve for $d$. Set $263-d$ equal to $6d+249$ and solve to find that $d=2$.

Plug $d=2$ back into the equation $3{n}^2+2n = 263-d$. Subtract 261 from both sides to get your final equation of $3{n}^2+2n-261 = 0.$ Solve using the quadratic formula to find that the solutions are 9 and -10. Because the base must be positive, $n=9.$

Adding 2 to 9 gets $\boxed{\textbf{(B)} ~11}$

-Zeusthemoose (edited for readability)

Solution 2

$32d$ is greater than $263$ when both are interpreted in base 10, so $n$ is less than $10$. Some trial and error gives $n=9$. $263$ in base 9 is $322$, so the answer is $9+2=\boxed{\textbf{(B)} ~11}$.

-SmileKat32

Video Solution by OmegaLearn (Bases and System of Equations)

https://youtu.be/oAc3GdAm6lk

~ pi_is_3.14

Video Solution by TheBeautyofMath

https://youtu.be/L1iW94Ue3eI?t=880

~IceMatrix

Video Solution by Interstigation

https://youtu.be/X86a7-pSSSY

~Interstigation

See Also

2021 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png