Difference between revisions of "1980 AHSME Problems/Problem 28"
m (→Solution) |
m (→Solution) |
||
Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
− | + | Let <math>h(x)=x^2+x+1</math>. | |
− | |||
− | <math>x^2n = x^2n+x^{2n-1}+x^{2n-2} | + | Then we have |
+ | <cmath>(x+1)^2n = (x^2+2x+1)^n = (h(x)+x)^n = g(x) \cdot h(x) + x^n,</cmath> | ||
+ | where <math>g(x)</math> is <math>h^{n-1}(x) + nh^{n-2}(x) \cdot x + ... + x^{n-1}</math> (after expanding <math>(h(x)+x)^n</math> according to the Binomial Theorem. | ||
+ | |||
+ | Notice that | ||
+ | <math></math>x^2n = x^2n+x^{2n-1}+x^{2n-2}+...x | ||
-x^{2n-1}-x^{2n-2}-x^{2n-3} | -x^{2n-1}-x^{2n-2}-x^{2n-3} | ||
− | +...< | + | +...<math> |
− | <math>x^n = x^n+x^{n-1}+x^{n-2} | + | </math>x^n = x^n+x^{n-1}+x^{n-2} |
-x^{n-1}-x^{n-2}-x^{n-3} | -x^{n-1}-x^{n-2}-x^{n-3} | ||
− | +....< | + | +....<math> |
− | Therefore, the left term from <math>x^2n< | + | Therefore, the left term from </math>x^2n<math> is </math>x^{(2n-3u)}<math> |
− | the left term from <math>x^n< | + | the left term from </math>x^n<math> is </math>x^{(n-3v)}$, |
If divisible by h(x), we need 2n-3u=1 and n-3v=2 or | If divisible by h(x), we need 2n-3u=1 and n-3v=2 or | ||
2n-3u=2 and n-3v=1 | 2n-3u=2 and n-3v=1 | ||
− | The solution will be n=1 | + | The solution will be n=1 or 2 mod(3). Therefore n=21 is impossible |
~~Wei | ~~Wei |
Revision as of 18:38, 30 October 2021
Problem
The polynomial is not divisible by if equals
Solution
Let .
Then we have where is (after expanding according to the Binomial Theorem.
Notice that $$ (Error compiling LaTeX. Unknown error_msg)x^2n = x^2n+x^{2n-1}+x^{2n-2}+...x
-x^{2n-1}-x^{2n-2}-x^{2n-3}
+...$$ (Error compiling LaTeX. Unknown error_msg)x^n = x^n+x^{n-1}+x^{n-2}
-x^{n-1}-x^{n-2}-x^{n-3}
+....x^2nx^{(2n-3u)}x^nx^{(n-3v)}$,
If divisible by h(x), we need 2n-3u=1 and n-3v=2 or
2n-3u=2 and n-3v=1
The solution will be n=1 or 2 mod(3). Therefore n=21 is impossible
~~Wei
See also
1980 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 27 |
Followed by Problem 29 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.