Difference between revisions of "2021 Fall AMC 12A Problems/Problem 10"

m (Solution 1)
(Solution 2 (9's Identity): Reformatted, especially on the align commands.)
Line 18: Line 18:
 
~Aidensharp ~kante314 ~MRENTHUSIASM
 
~Aidensharp ~kante314 ~MRENTHUSIASM
  
==Solution 2 (9's Identity)==
+
==Solution 2 (Powers of 9)==
  
We need to first convert <math>N</math> into a regular base-10 integer:
+
We need to first convert <math>N</math> into a regular base-10 integer: <cmath>N = 27{,}006{,}000{,}052_9 = 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2.</cmath>
  
 +
Now, consider how the last digit of <math>9</math> changes with changes of the power of <math>9:</math>
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
N&=27{,}006{,}000{,}052_9 \\
+
9^0&=1 \\
&= 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2 \\
+
9^1&=9 \\
 +
9^2&=81 \\
 +
9^3&=729 \\
 +
9^4&=6561 \\
 +
& \ \vdots
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 +
If <math>x</math> is odd, then <math>9^x \equiv 4\pmod{5}.</math>
  
Now, consider how the last digit of <math>9</math> changes with changes of the power of <math>9</math>:
+
If <math>x</math> is even, then <math>9^x \equiv 1\pmod{5}.</math>
 
 
<cmath>\begin{align*}
 
9^0=1 \\
 
9^1=9 \\
 
9^2=81 \\
 
9^3=729 \\
 
9^4=6561 \\
 
......
 
\end{align*}</cmath>
 
 
 
Note that if <math>x</math> is odd:
 
 
 
<cmath>\begin{align*}
 
9^x &\equiv 4\pmod{5} \\
 
\end{align*}</cmath>
 
 
 
If <math>x</math> is even:
 
 
 
<cmath>\begin{align*}
 
9^x &\equiv 1\pmod{5} \\
 
\end{align*}</cmath>
 
 
 
Therefore, we have:
 
  
 +
Therefore, we have
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
N&\equiv 2\cdot(1) + 7\cdot(4) + 6\cdot(1) + 5\cdot(4) + 2\cdot(1) &\pmod{5} \\
 
N&\equiv 2\cdot(1) + 7\cdot(4) + 6\cdot(1) + 5\cdot(4) + 2\cdot(1) &\pmod{5} \\
 
&\equiv 2+28+6+20+2 &\pmod{5} \\
 
&\equiv 2+28+6+20+2 &\pmod{5} \\
 
&\equiv 58 &\pmod{5} \\
 
&\equiv 58 &\pmod{5} \\
&\equiv \boxed{\textbf{(D) } 3} &\pmod{5} \\
+
&\equiv \boxed{\textbf{(D) } 3} &\pmod{5}. \\
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
 
Note that for the odd case, <math>9^x \equiv -1\pmod{5}</math> may simplify the process further, as given by Solution 1.
 
Note that for the odd case, <math>9^x \equiv -1\pmod{5}</math> may simplify the process further, as given by Solution 1.
  

Revision as of 12:42, 26 November 2021

The following problem is from both the 2021 Fall AMC 10A #12 and 2021 Fall AMC 12A #10, so both problems redirect to this page.

Problem

The base-nine representation of the number $N$ is $27{,}006{,}000{,}052_{\text{nine}}.$ What is the remainder when $N$ is divided by $5?$

$\textbf{(A) } 0\qquad\textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) }4$

Solution 1 (Modular Arithmetic)

Recall that $9\equiv-1\pmod{5}.$ We expand $N$ by the definition of bases: \begin{align*} N&=27{,}006{,}000{,}052_9 \\ &= 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2 \\ &\equiv 2\cdot(-1)^{10} + 7\cdot(-1)^9 + 6\cdot(-1)^6 + 5\cdot(-1) + 2 &&\pmod{5} \\ &\equiv 2-7+6-5+2 &&\pmod{5} \\ &\equiv -2 &&\pmod{5} \\ &\equiv \boxed{\textbf{(D) } 3} &&\pmod{5}. \end{align*} ~Aidensharp ~kante314 ~MRENTHUSIASM

Solution 2 (Powers of 9)

We need to first convert $N$ into a regular base-10 integer: \[N = 27{,}006{,}000{,}052_9 = 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2.\]

Now, consider how the last digit of $9$ changes with changes of the power of $9:$ \begin{align*} 9^0&=1 \\ 9^1&=9 \\ 9^2&=81 \\ 9^3&=729 \\ 9^4&=6561 \\ & \ \vdots \end{align*} If $x$ is odd, then $9^x \equiv 4\pmod{5}.$

If $x$ is even, then $9^x \equiv 1\pmod{5}.$

Therefore, we have \begin{align*} N&\equiv 2\cdot(1) + 7\cdot(4) + 6\cdot(1) + 5\cdot(4) + 2\cdot(1) &\pmod{5} \\ &\equiv 2+28+6+20+2 &\pmod{5} \\ &\equiv 58 &\pmod{5} \\ &\equiv \boxed{\textbf{(D) } 3} &\pmod{5}. \\ \end{align*} Note that for the odd case, $9^x \equiv -1\pmod{5}$ may simplify the process further, as given by Solution 1.

~Wilhelm Z

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png