Difference between revisions of "2006 AIME I Problems/Problem 6"
m (rv) |
(→Solution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | Numbers of the form <math>0.\overline{abc}</math> can be written as <math>\frac{abc}{999}</math>. There are <math>10\times9\times8=720</math> such numbers. Each digit will appear in each place value <math>\frac{720}{10}=72</math> times, and the sum of the digits, 0 through 9, is 45. So the sum of all the numbers is <math>\frac{45\times72\times111}{999}=360</math>. | + | Numbers of the form <math>0.\overline{abc}</math> can be written as <math>\frac{abc}{999}</math>. There are <math>10\times9\times8=720</math> such numbers. Each digit will appear in each place value <math>\frac{720}{10}=72</math> times, and the sum of the digits, 0 through 9, is 45. So the sum of all the numbers is <math>\frac{45\times72\times111}{999}= \boxed{360} </math>. |
Alternatively, for every number, <math>0.\overline{abc}</math>, there will be exactly one other number, such that when they are added together, the sum is <math>0.\overline{999}</math>, or, more precisely, 1. As an example, <math>.\overline{123}+.\overline{876}=.\overline{999} \Longrightarrow 1</math>. | Alternatively, for every number, <math>0.\overline{abc}</math>, there will be exactly one other number, such that when they are added together, the sum is <math>0.\overline{999}</math>, or, more precisely, 1. As an example, <math>.\overline{123}+.\overline{876}=.\overline{999} \Longrightarrow 1</math>. | ||
− | Thus, the solution can be determined by dividing the total number of [[permutation]]s by 2. The answer is <math>\frac{10 \cdot 9 \cdot 8}{2} = \frac{720}{2}= 360</math>. | + | Thus, the solution can be determined by dividing the total number of [[permutation]]s by 2. The answer is <math>\frac{10 \cdot 9 \cdot 8}{2} = \frac{720}{2}= \boxed{360}</math>. |
== See also == | == See also == |
Revision as of 09:02, 31 August 2012
Problem
Let be the set of real numbers that can be represented as repeating decimals of the form where are distinct digits. Find the sum of the elements of
Solution
Numbers of the form can be written as . There are such numbers. Each digit will appear in each place value times, and the sum of the digits, 0 through 9, is 45. So the sum of all the numbers is .
Alternatively, for every number, , there will be exactly one other number, such that when they are added together, the sum is , or, more precisely, 1. As an example, .
Thus, the solution can be determined by dividing the total number of permutations by 2. The answer is .
See also
2006 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |