Difference between revisions of "2022 AMC 8 Problems/Problem 9"
(→Problem) |
MRENTHUSIASM (talk | contribs) (→Problem) |
||
Line 3: | Line 3: | ||
A cup of boiling water (<math>212^{\circ}\text{F}</math>) is placed to cool in a room whose temperature remains constant at <math>68^{\circ}\text{F}</math>. Suppose the difference between the water temperature and the room temperature is halved every <math>5</math> minutes. What is the water temperature, in degrees Fahrenheit, after <math>15</math> minutes? | A cup of boiling water (<math>212^{\circ}\text{F}</math>) is placed to cool in a room whose temperature remains constant at <math>68^{\circ}\text{F}</math>. Suppose the difference between the water temperature and the room temperature is halved every <math>5</math> minutes. What is the water temperature, in degrees Fahrenheit, after <math>15</math> minutes? | ||
− | <math>\textbf{(A)} | + | <math>\textbf{(A) } 77 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 92 \qquad \textbf{(D) } 98 \qquad \textbf{(E) } 104</math> |
==Solution== | ==Solution== |
Revision as of 11:07, 28 January 2022
Problem
A cup of boiling water () is placed to cool in a room whose temperature remains constant at . Suppose the difference between the water temperature and the room temperature is halved every minutes. What is the water temperature, in degrees Fahrenheit, after minutes?
Solution
See Also
2022 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.