Difference between revisions of "2022 AMC 8 Problems/Problem 17"
(Added problem / page) |
m (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | If <math>n</math> is an even positive integer, the | + | If <math>n</math> is an even positive integer, the <i>double factorial</i> notation <math>n!!</math> represents the product of all the even integers from <math>2</math> to <math>n</math>. For example, <math>8!! = 2 \cdot 4 \cdot 6 \cdot 8</math>. What is the units digit of the following sum? <cmath>2!! + 4!! + 6!! + \cdots + 2018!! + 2020!! + 2022!!</cmath> |
<math>\textbf{(A)} ~0\qquad\textbf{(B)} ~2\qquad\textbf{(C)} ~4\qquad\textbf{(D)} ~6\qquad\textbf{(E)} ~8\qquad</math> | <math>\textbf{(A)} ~0\qquad\textbf{(B)} ~2\qquad\textbf{(C)} ~4\qquad\textbf{(D)} ~6\qquad\textbf{(E)} ~8\qquad</math> |
Revision as of 13:04, 28 January 2022
Problem
If is an even positive integer, the double factorial notation represents the product of all the even integers from to . For example, . What is the units digit of the following sum?
Solution
See Also
2022 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.