Difference between revisions of "2022 AMC 8 Problems/Problem 6"

m
(Solution 2)
Line 23: Line 23:
 
==Solution 2==
 
==Solution 2==
  
Let the common different of the arithmetic sequence be <math>d</math>. Consequently, the smallest number is <math>15-d</math> and the largest number is <math>15+d</math>. As the largest number is <math>4</math> times the smallest number, <math>15+d=60-4d\implies d=9</math>. Finally, we find that the smallest number is <math>15-9=\boxed{\textbf{(C) } 6</math>.
+
Let the common different of the arithmetic sequence be <math>d</math>. Consequently, the smallest number is <math>15-d</math> and the largest number is <math>15+d</math>. As the largest number is <math>4</math> times the smallest number, <math>15+d=60-4d\implies d=9</math>. Finally, we find that the smallest number is <math>15-9=\boxed{\textbf{(C) } 6}</math>.
  
 
~MathFun1000
 
~MathFun1000

Revision as of 22:29, 16 January 2023

Problem

Three positive integers are equally spaced on a number line. The middle number is $15,$ and the largest number is $4$ times the smallest number. What is the smallest of these three numbers?

$\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8$

Solution 1

Let the smallest number be $x.$ It follows that the largest number is $4x.$

Since $x,15,$ and $4x$ are equally spaced on a number line, we have \begin{align*} 4x-15 &= 15-x \\ 5x &= 30 \\ x &= \boxed{\textbf{(C) } 6}. \end{align*} ~MRENTHUSIASM

Video Solution

https://www.youtube.com/watch?v=Ij9pAy6tQSg&t=409

~Interstigation

Solution 2

Let the common different of the arithmetic sequence be $d$. Consequently, the smallest number is $15-d$ and the largest number is $15+d$. As the largest number is $4$ times the smallest number, $15+d=60-4d\implies d=9$. Finally, we find that the smallest number is $15-9=\boxed{\textbf{(C) } 6}$.

~MathFun1000

Video Solution

https://youtu.be/1xspUFoKDnU

~STEMbreezy

Video Solution

https://youtu.be/evYD-UMJotA

~savannahsolver

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png