Difference between revisions of "1965 AHSME Problems/Problem 27"

(Add statement & Unify answer)
(see also box)
Line 25: Line 25:
  
 
The answer is <math>\boxed{A}</math>
 
The answer is <math>\boxed{A}</math>
 +
 +
== See Also ==
 +
{{AHSME 40p box|year=1965|num-b=26|num-a=28}}
 +
{{MAA Notice}}
 +
[[Category:Intermediate Algebra Problems]]

Revision as of 19:09, 18 July 2024

Problem

When $y^2 + my + 2$ is divided by $y - 1$ the quotient is $f(y)$ and the remainder is $R_1$. When $y^2 + my + 2$ is divided by $y + 1$ the quotient is $g(y)$ and the remainder is $R_2$. If $R_1 = R_2$ then $m$ is:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ 1 \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ - 1 \qquad  \textbf{(E) }\ \text{an undetermined constant}$

Solution

Let $h(y)=y^2+my+2$

$h(y)=y^2+my+2=f(y)(y-1)R_1$

h(y)=$y^2$+my+2=g(y)(y+1)$R_2$

h(1)=3+m=$R_1$

h(-1)=3-m=$R_2$

m=0

The answer is $\boxed{A}$

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png