Difference between revisions of "1965 AHSME Problems/Problem 7"

(see also box)
(Solution)
Line 9: Line 9:
 
\textbf{(E) }\ -\frac{b}{c} </math>
 
\textbf{(E) }\ -\frac{b}{c} </math>
  
== Solution ==
+
== Solution 1 ==
  
Using Vieta's formulas, we can write the sum of the roots of any quadratic equation in the form <math>ax^2+bx+c = 0</math> as <math>\frac{-b}{a}</math>, and the product as <math>\frac{c}{a}</math>.
+
Using [[Vieta's formulas]], we can write the sum of the roots of any quadratic equation in the form <math>ax^2+bx+c = 0</math> as <math>\frac{-b}{a}</math>, and the product as <math>\frac{c}{a}</math>.
  
 
If <math>r</math> and <math>s</math> are the roots, then the sum of the reciprocals of the roots is <math>\frac{1}{r} + \frac{1}{s} = \frac{r+s}{rs}</math>.
 
If <math>r</math> and <math>s</math> are the roots, then the sum of the reciprocals of the roots is <math>\frac{1}{r} + \frac{1}{s} = \frac{r+s}{rs}</math>.
  
 
Applying the formulas, we get <math>\frac{\frac{-b}{a}}{\frac{c}{a}}</math>, or <math>\frac {-b}{c}</math> => <math>\boxed{E}</math>.
 
Applying the formulas, we get <math>\frac{\frac{-b}{a}}{\frac{c}{a}}</math>, or <math>\frac {-b}{c}</math> => <math>\boxed{E}</math>.
 +
 +
== Solution 2 ==
 +
 +
Let <math>f(x)=ax^2+bx+c</math>. <math>f(x)</math> has roots <math>r</math> and <math>s</math>, and so <math>x^2f(\frac{1}{x})</math> has roots <math>\frac{1}{r}</math> and <math>\frac{1}{s}</math>. Because <math>x^2f(\frac{1}{x})=cx^2+bx+a</math>, by [[Vieta's formulas]], <math>\frac{1}{r}+\frac{1}{s}=\boxed{\frac{-b}{c}}</math>, which is answer choice <math>\fbox{E}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 09:05, 18 July 2024

Problem

The sum of the reciprocals of the roots of the equation $ax^2 + bx + c = 0$ is:

$\textbf{(A)}\ \frac {1}{a} + \frac {1}{b} \qquad  \textbf{(B) }\ - \frac {c}{b} \qquad  \textbf{(C) }\ \frac{b}{c}\qquad \textbf{(D) }\ -\frac{a}{b}\qquad \textbf{(E) }\ -\frac{b}{c}$

Solution 1

Using Vieta's formulas, we can write the sum of the roots of any quadratic equation in the form $ax^2+bx+c = 0$ as $\frac{-b}{a}$, and the product as $\frac{c}{a}$.

If $r$ and $s$ are the roots, then the sum of the reciprocals of the roots is $\frac{1}{r} + \frac{1}{s} = \frac{r+s}{rs}$.

Applying the formulas, we get $\frac{\frac{-b}{a}}{\frac{c}{a}}$, or $\frac {-b}{c}$ => $\boxed{E}$.

Solution 2

Let $f(x)=ax^2+bx+c$. $f(x)$ has roots $r$ and $s$, and so $x^2f(\frac{1}{x})$ has roots $\frac{1}{r}$ and $\frac{1}{s}$. Because $x^2f(\frac{1}{x})=cx^2+bx+a$, by Vieta's formulas, $\frac{1}{r}+\frac{1}{s}=\boxed{\frac{-b}{c}}$, which is answer choice $\fbox{E}$.

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions