Difference between revisions of "1965 AHSME Problems/Problem 19"
m (fixed typos that made it not work) |
m (added link) |
||
Line 12: | Line 12: | ||
Let <math>f(x)=x^3+3x^2+9x+3</math> and <math>g(x)=x^4+4x^3+6px^2+4qx+r</math>. | Let <math>f(x)=x^3+3x^2+9x+3</math> and <math>g(x)=x^4+4x^3+6px^2+4qx+r</math>. | ||
− | Let 3 roots of <math>f(x)</math> be <math>r_1, r_2 </math> and <math>r_3</math>. As <math>f(x)|g(x)</math> , 3 roots of 4 roots of <math>g(x)</math> will be same as roots of <math>f(x)</math>. Let the 4th root of <math>g(x)</math> be <math>r_4</math>. By | + | Let 3 roots of <math>f(x)</math> be <math>r_1, r_2 </math> and <math>r_3</math>. As <math>f(x)|g(x)</math> , 3 roots of 4 roots of <math>g(x)</math> will be same as roots of <math>f(x)</math>. Let the 4th root of <math>g(x)</math> be <math>r_4</math>. By [[Vieta's Formulas]] |
In <math>f(x)</math> | In <math>f(x)</math> | ||
Line 53: | Line 53: | ||
By ~Ahmed_Ashhab | By ~Ahmed_Ashhab | ||
− | |||
== Solution 2 == | == Solution 2 == |
Latest revision as of 10:17, 29 July 2024
Contents
Problem 19
If is exactly divisible by , the value of is:
Solution 1
Let and .
Let 3 roots of be and . As , 3 roots of 4 roots of will be same as roots of . Let the 4th root of be . By Vieta's Formulas
In
In
so
By ~Ahmed_Ashhab
Solution 2
Notice that to obtain the term one must multiply by some linear function of the form . Looking at the term, it is clear that must equal . Therefore by multiplying by , the product will be . Therefore , , . Thus
See Also
1965 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.