Difference between revisions of "2024 AMC 10A Problems/Problem 23"
m (Protected "2024 AMC 10A Problems/Problem 23" ([Edit=Allow only administrators] (expires 04:59, 8 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 8 November 2024 (UTC))) [cascading]) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | Integers <math>a</math>, <math>b</math>, and <math>c</math> satisfy <math>ab + c = 100</math>, <math>bc + a = 87</math>, and <math>ca + b = 60</math>. What is <math>ab + bc + ca</math>? | ||
+ | <math> | ||
+ | \textbf{(A) }212 \qquad | ||
+ | \textbf{(B) }247 \qquad | ||
+ | \textbf{(C) }258 \qquad | ||
+ | \textbf{(D) }276 \qquad | ||
+ | \textbf{(E) }284 \qquad | ||
+ | </math> | ||
+ | |||
+ | ==Solution== | ||
+ | Subtracting the first two equations yields <math>(a-c)(b-1)=13</math>. Notice that both factors are integers, so <math>b-1</math> could equal one of <math>13,1,-1,-13</math> and <math>b=14,2,0,-12</math>. We consider each case separately: | ||
+ | |||
+ | For <math>b=0</math>, from the second equation, we see that <math>a=87</math>. Then <math>80c=60</math>, which is not possible as <math>c</math> is an integer, so this case is invalid. | ||
+ | |||
+ | For <math>b=2</math>, we have <math>2c+a=87</math> and <math>ca=58</math>, which by experimentation on the factors of <math>58</math> has no solution, so this is also invalid. | ||
+ | |||
+ | For <math>b=14</math>, we have <math>14c+a=87</math> and <math>ca=46</math>, which by experimentation on the factors of <math>46</math> has no solution, so this is also invalid. | ||
+ | |||
+ | Thus, we must have <math>b=-12</math>, so <math>a=12c+87</math> and <math>ca=72</math>. Thus <math>c(12c+87)=72</math>, so <math>c(4c+29)=24</math>. We can simply trial and error this to find that <math>c=-8</math>, so then <math>a=-9</math>. The answer is then <math>(-9)(-12)+(-12)(-8)+(-8)(-9)=108+96+72=\boxed{\textbf{(B) }276}</math>. | ||
+ | |||
+ | ~eevee9406 | ||
+ | |||
+ | ==See also== | ||
+ | {{AMC10 box|year=2024|ab=A|num-b=22|num-a=24}} | ||
+ | {{MAA Notice}} |
Revision as of 16:22, 8 November 2024
Problem
Integers , , and satisfy , , and . What is ?
Solution
Subtracting the first two equations yields . Notice that both factors are integers, so could equal one of and . We consider each case separately:
For , from the second equation, we see that . Then , which is not possible as is an integer, so this case is invalid.
For , we have and , which by experimentation on the factors of has no solution, so this is also invalid.
For , we have and , which by experimentation on the factors of has no solution, so this is also invalid.
Thus, we must have , so and . Thus , so . We can simply trial and error this to find that , so then . The answer is then .
~eevee9406
See also
2024 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.