Difference between revisions of "2024 AMC 10A Problems/Problem 1"

(Solution 1)
Line 6: Line 6:
  
 
== Solution 1 ==
 
== Solution 1 ==
The likely fastest method will be straight computation. <math>9901\cdot101</math> evaluates to <math>1000001</math> and <math>99\cdot10101</math> evaluates to <math>999999</math>. The difference is \boxed{\textbf{(A) }2}
+
The likely fastest method will be straight computation. <math>9901\cdot101</math> evaluates to <math>1000001</math> and <math>99\cdot10101</math> evaluates to <math>999999</math>. The difference is <math>\boxed{\textbf{(A) }2</math>
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2024|ab=A|before=First Problem|num-a=2}}
 
{{AMC10 box|year=2024|ab=A|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:13, 8 November 2024

Problem

What is the value of $9901\cdot101-99\cdot10101?$

$\textbf{(A)}~2\qquad\textbf{(B)}~20\qquad\textbf{(C)}~200\qquad\textbf{(D)}~202\qquad\textbf{(E)}~2020$

Solution 1

The likely fastest method will be straight computation. $9901\cdot101$ evaluates to $1000001$ and $99\cdot10101$ evaluates to $999999$. The difference is $\boxed{\textbf{(A) }2$ (Error compiling LaTeX. Unknown error_msg)

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png