Difference between revisions of "2024 AMC 10A Problems/Problem 5"

m
Line 1: Line 1:
 +
{{duplicate|[[2024 AMC 10A Problems/Problem 5|2024 AMC 10A #5]] and [[2024 AMC 12A Problems/Problem 4|2024 AMC 12A #4]]}}
 
== Problem ==
 
== Problem ==
 
What is the least value of <math>n</math> such that <math>n!</math> is a multiple of <math>2024</math>?
 
What is the least value of <math>n</math> such that <math>n!</math> is a multiple of <math>2024</math>?
Line 11: Line 12:
 
==See also==
 
==See also==
 
{{AMC10 box|year=2024|ab=A|num-b=4|num-a=6}}
 
{{AMC10 box|year=2024|ab=A|num-b=4|num-a=6}}
 +
{{AMC12 box|year=2024|ab=A|num-b=3|num-a=5}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:23, 8 November 2024

The following problem is from both the 2024 AMC 10A #5 and 2024 AMC 12A #4, so both problems redirect to this page.

Problem

What is the least value of $n$ such that $n!$ is a multiple of $2024$?

$\textbf{(A) } 11\qquad\textbf{(B) } 21\qquad\textbf{(C) } 22\qquad\textbf{(D) } 23\qquad\textbf{(E) } 253$

Solution

Note that $2024=2^3\cdot11\cdot23$ in the prime factorization. Since $23!$ is a multiple of $2^3, 11,$ and $23,$ we conclude that $23!$ is a multiple of $2024.$ Therefore, we have $n=\boxed{\textbf{(D) } 23}.$

~MRENTHUSIASM

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png