Difference between revisions of "2024 AMC 10A Problems/Problem 18"

(Solution)
(Solution)
Line 7: Line 7:
 
<math>2b^3+2b+4\equiv 0\pmod{16}\implies b^3+b+2\equiv 0\pmod 8</math>, if <math>b</math> even then <math>b+2\equiv 0\pmod 8\implies b\equiv 6\pmod 8</math>. If <math>b</math> odd then <math>b^2\equiv 1\pmod 8\implies b^3+b+2\equiv 2b+2\pmod 8</math> so <math>2b+2\equiv 0\pmod 8\implies b+1\equiv 0\pmod 4\implies b\equiv 3,7\pmod 8</math>. Now <math>8\mid 2024</math> so <math>\tfrac38\cdot 2024=759</math> but <math>3</math> is too small so <math>758\implies\boxed{20}</math>.
 
<math>2b^3+2b+4\equiv 0\pmod{16}\implies b^3+b+2\equiv 0\pmod 8</math>, if <math>b</math> even then <math>b+2\equiv 0\pmod 8\implies b\equiv 6\pmod 8</math>. If <math>b</math> odd then <math>b^2\equiv 1\pmod 8\implies b^3+b+2\equiv 2b+2\pmod 8</math> so <math>2b+2\equiv 0\pmod 8\implies b+1\equiv 0\pmod 4\implies b\equiv 3,7\pmod 8</math>. Now <math>8\mid 2024</math> so <math>\tfrac38\cdot 2024=759</math> but <math>3</math> is too small so <math>758\implies\boxed{20}</math>.
 
~OronSH ~mathkiddus
 
~OronSH ~mathkiddus
 +
==See also==
 +
{{AMC10 box|year=2024|ab=A|before=First Problem|num-a=2}}
 +
{{MAA Notice}}

Revision as of 16:04, 8 November 2024

Problem

There are exactly $K$ positive integers $b$ with $5 \leq b \leq 2024$ such that the base-$b$ integer $2024_b$ is divisible by $16$ (where $16$ is in base ten). What is the sum of the digits of $K$?

$\textbf{(A) }16\qquad\textbf{(B) }17\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad\textbf{(E) }21$

Solution

$2b^3+2b+4\equiv 0\pmod{16}\implies b^3+b+2\equiv 0\pmod 8$, if $b$ even then $b+2\equiv 0\pmod 8\implies b\equiv 6\pmod 8$. If $b$ odd then $b^2\equiv 1\pmod 8\implies b^3+b+2\equiv 2b+2\pmod 8$ so $2b+2\equiv 0\pmod 8\implies b+1\equiv 0\pmod 4\implies b\equiv 3,7\pmod 8$. Now $8\mid 2024$ so $\tfrac38\cdot 2024=759$ but $3$ is too small so $758\implies\boxed{20}$. ~OronSH ~mathkiddus

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png