Difference between revisions of "2024 AMC 10A Problems/Problem 18"
Mathkiddus (talk | contribs) (→Solution) |
Mathkiddus (talk | contribs) (→Solution) |
||
Line 7: | Line 7: | ||
<math>2b^3+2b+4\equiv 0\pmod{16}\implies b^3+b+2\equiv 0\pmod 8</math>, if <math>b</math> even then <math>b+2\equiv 0\pmod 8\implies b\equiv 6\pmod 8</math>. If <math>b</math> odd then <math>b^2\equiv 1\pmod 8\implies b^3+b+2\equiv 2b+2\pmod 8</math> so <math>2b+2\equiv 0\pmod 8\implies b+1\equiv 0\pmod 4\implies b\equiv 3,7\pmod 8</math>. Now <math>8\mid 2024</math> so <math>\tfrac38\cdot 2024=759</math> but <math>3</math> is too small so <math>758\implies\boxed{20}</math>. | <math>2b^3+2b+4\equiv 0\pmod{16}\implies b^3+b+2\equiv 0\pmod 8</math>, if <math>b</math> even then <math>b+2\equiv 0\pmod 8\implies b\equiv 6\pmod 8</math>. If <math>b</math> odd then <math>b^2\equiv 1\pmod 8\implies b^3+b+2\equiv 2b+2\pmod 8</math> so <math>2b+2\equiv 0\pmod 8\implies b+1\equiv 0\pmod 4\implies b\equiv 3,7\pmod 8</math>. Now <math>8\mid 2024</math> so <math>\tfrac38\cdot 2024=759</math> but <math>3</math> is too small so <math>758\implies\boxed{20}</math>. | ||
~OronSH ~mathkiddus | ~OronSH ~mathkiddus | ||
+ | ==See also== | ||
+ | {{AMC10 box|year=2024|ab=A|before=First Problem|num-a=2}} | ||
+ | {{MAA Notice}} |
Revision as of 16:04, 8 November 2024
Problem
There are exactly positive integers with such that the base- integer is divisible by (where is in base ten). What is the sum of the digits of ?
Solution
, if even then . If odd then so . Now so but is too small so . ~OronSH ~mathkiddus
See also
2024 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.