Difference between revisions of "2024 AMC 10A Problems/Problem 21"

m
Line 1: Line 1:
 +
{{duplicate|[[2024 AMC 10A Problems/Problem 21|2024 AMC 10A #21]] and [[2024 AMC 12A Problems/Problem 14|2024 AMC 12A #14]]}}
 
==Problem==
 
==Problem==
 
The numbers, in order, of each row and the numbers, in order, of each column of a <math>5 \times 5</math> array of integers form an arithmetic progression of length <math>5{.}</math> The numbers in positions <math>(5, 5), \,(2,4),\,(4,3),</math> and <math>(3, 1)</math> are <math>0, 48, 16,</math> and <math>12{,}</math> respectively. What number is in position <math>(1, 2)?</math>
 
The numbers, in order, of each row and the numbers, in order, of each column of a <math>5 \times 5</math> array of integers form an arithmetic progression of length <math>5{.}</math> The numbers in positions <math>(5, 5), \,(2,4),\,(4,3),</math> and <math>(3, 1)</math> are <math>0, 48, 16,</math> and <math>12{,}</math> respectively. What number is in position <math>(1, 2)?</math>
Line 11: Line 12:
 
==See also==
 
==See also==
 
{{AMC10 box|year=2024|ab=A|num-b=20|num-a=22}}
 
{{AMC10 box|year=2024|ab=A|num-b=20|num-a=22}}
 +
{{AMC12 box|year=2024|ab=A|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:40, 8 November 2024

The following problem is from both the 2024 AMC 10A #21 and 2024 AMC 12A #14, so both problems redirect to this page.

Problem

The numbers, in order, of each row and the numbers, in order, of each column of a $5 \times 5$ array of integers form an arithmetic progression of length $5{.}$ The numbers in positions $(5, 5), \,(2,4),\,(4,3),$ and $(3, 1)$ are $0, 48, 16,$ and $12{,}$ respectively. What number is in position $(1, 2)?$ \[\begin{bmatrix} . & ? &.&.&. \\ .&.&.&48&.\\ 12&.&.&.&.\\ .&.&16&.&.\\ .&.&.&.&0\end{bmatrix}\] $\textbf{(A) } 19 \qquad \textbf{(B) } 24 \qquad \textbf{(C) } 29 \qquad \textbf{(D) } 34 \qquad \textbf{(E) } 39$

Solution

\[\begin{bmatrix} 12 & 29 &46&63&80 \\ 12&24&36&48&60\\ 12&19&26&33&40\\ 12&14&16&18&20\\ 12&9&6&3&0\end{bmatrix}\]

-submitted by Astingo

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png