Difference between revisions of "2002 AMC 10A Problems/Problem 2"

(New page: ==Problem== Given that a, b, and c are non-zero real numbers, define <math>(a, b, c) = \frac{a}{b} + \frac{b}{c} + \frac{c}{a}</math>, find <math>(2, 12, 9)</math>. <math>\text{(A)}\ 4 \q...)
 
(see also and stuff)
Line 6: Line 6:
 
==Solution==
 
==Solution==
 
<math>(2, 12, 9)=\frac{2}{12}+\frac{12}{9}+\frac{9}{2}=\frac{1}{6}+\frac{4}{3}+\frac{9}{2}=\frac{1}{6}+\frac{8}{6}+\frac{27}{6}=\frac{36}{6}=\boxed{6}</math>. Our answer is then <math>\text{(C)}\ 6 \qquad</math>.
 
<math>(2, 12, 9)=\frac{2}{12}+\frac{12}{9}+\frac{9}{2}=\frac{1}{6}+\frac{4}{3}+\frac{9}{2}=\frac{1}{6}+\frac{8}{6}+\frac{27}{6}=\frac{36}{6}=\boxed{6}</math>. Our answer is then <math>\text{(C)}\ 6 \qquad</math>.
 +
 +
==See Also==
 +
{{AMC10 box|year=2002|ab=A|num-b=1|num-a=3}}
 +
 +
[[Category:Introductory Algebra Problems]]

Revision as of 17:05, 26 December 2008

Problem

Given that a, b, and c are non-zero real numbers, define $(a, b, c) = \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$, find $(2, 12, 9)$.

$\text{(A)}\ 4 \qquad \text{(B)}\ 5 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 8$

Solution

$(2, 12, 9)=\frac{2}{12}+\frac{12}{9}+\frac{9}{2}=\frac{1}{6}+\frac{4}{3}+\frac{9}{2}=\frac{1}{6}+\frac{8}{6}+\frac{27}{6}=\frac{36}{6}=\boxed{6}$. Our answer is then $\text{(C)}\ 6 \qquad$.

See Also

2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions