Difference between revisions of "2002 AMC 10B Problems/Problem 2"

(created page)
 
(add box and stuff)
Line 12: Line 12:
  
 
<math>\frac{2\cdot 4\cdot 6}{2+4+6}=\frac{48}{12}=4\Longrightarrow\mathrm{ (C) \ }</math>
 
<math>\frac{2\cdot 4\cdot 6}{2+4+6}=\frac{48}{12}=4\Longrightarrow\mathrm{ (C) \ }</math>
 +
 +
==See Also==
 +
{{AMC10 box|year=2002|ab=B|num-b=1|num-a=3}}
 +
 +
[[Category:Introductory Algebra Problems]]

Revision as of 12:57, 27 December 2008

Problem

For the nonzero numbers a, b, and c, define

$(a,b,c)=\frac{abc}{a+b+c}$

Find $(2,4,6)$.

$\mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 24$

Solution

$\frac{2\cdot 4\cdot 6}{2+4+6}=\frac{48}{12}=4\Longrightarrow\mathrm{ (C) \ }$

See Also

2002 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions