Difference between revisions of "2002 AMC 12A Problems/Problem 20"

(Solution)
(Solution)
Line 19: Line 19:
 
The repeating decimal <math>0.\overline{ab}</math> is equal to  
 
The repeating decimal <math>0.\overline{ab}</math> is equal to  
 
<cmath>
 
<cmath>
\frac{ab}{100} + \frac{ab}{10000} + \cdots
+
\frac{10a+b}{100} + \frac{10a+b}{10000} + \cdots
 
=
 
=
ab\cdot\left(\frac 1{10^2} + \frac 1{10^4} + \cdots \right)
+
(10a+b)\cdot\left(\frac 1{10^2} + \frac 1{10^4} + \cdots \right)
 
=  
 
=  
ab \cdot \frac 1{99}
+
(10a+b) \cdot \frac 1{99}
 
=
 
=
\frac{ab}{99}
+
\frac{10a+b}{99}
 
</cmath>
 
</cmath>
  

Revision as of 18:30, 28 February 2012

Problem

Suppose that $a$ and $b$ are digits, not both nine and not both zero, and the repeating decimal $0.\overline{ab}$ is expressed as a fraction in lowest terms. How many different denominators are possible?

$\text{(A) }3 \qquad \text{(B) }4 \qquad \text{(C) }5 \qquad \text{(D) }8 \qquad \text{(E) }9$

Solution

The repeating decimal $0.\overline{ab}$ is equal to \[\frac{10a+b}{100} + \frac{10a+b}{10000} + \cdots = (10a+b)\cdot\left(\frac 1{10^2} + \frac 1{10^4} + \cdots \right) =  (10a+b) \cdot \frac 1{99} = \frac{10a+b}{99}\]

When expressed in lowest terms, the denominator of this fraction will always be a divisor of the number $99 = 3\cdot 3\cdot 11$. This gives us the possibilities $\{1,3,9,11,33,99\}$. As $a$ and $b$ are not both nine and not both zero, the denumerator $1$ can not be achieved, leaving us with $\boxed{5}$ possible denominators.

(The other ones are achieved e.g. for $ab$ equal to $33$, $11$, $9$, $3$, and $1$, respectively.)

See Also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions