Difference between revisions of "2010 AIME I Problems/Problem 15"
(credit to RminusQ) |
(img) |
||
Line 2: | Line 2: | ||
In <math>\triangle{ABC}</math> with <math>AB = 12</math>, <math>BC = 13</math>, and <math>AC = 15</math>, let <math>M</math> be a point on <math>\overline{AC}</math> such that the [[incircle]]s of <math>\triangle{ABM}</math> and <math>\triangle{BCM}</math> have equal [[inradius|radii]]. Let <math>p</math> and <math>q</math> be positive [[relatively prime]] integers such that <math>\frac {AM}{CM} = \frac {p}{q}</math>. Find <math>p + q</math>. | In <math>\triangle{ABC}</math> with <math>AB = 12</math>, <math>BC = 13</math>, and <math>AC = 15</math>, let <math>M</math> be a point on <math>\overline{AC}</math> such that the [[incircle]]s of <math>\triangle{ABM}</math> and <math>\triangle{BCM}</math> have equal [[inradius|radii]]. Let <math>p</math> and <math>q</math> be positive [[relatively prime]] integers such that <math>\frac {AM}{CM} = \frac {p}{q}</math>. Find <math>p + q</math>. | ||
+ | __TOC__ | ||
== Solution == | == Solution == | ||
− | + | <center><asy> /* from geogebra: see azjps, userscripts.org/scripts/show/72997 */ | |
+ | import graph; defaultpen(linewidth(0.7)+fontsize(10)); size(200); | ||
+ | |||
+ | /* segments and figures */ | ||
+ | draw((0,0)--(15,0)); | ||
+ | draw((15,0)--(6.66667,9.97775)); | ||
+ | draw((6.66667,9.97775)--(0,0)); | ||
+ | draw((7.33333,0)--(6.66667,9.97775)); | ||
+ | draw(circle((4.66667,2.49444),2.49444)); | ||
+ | draw(circle((9.66667,2.49444),2.49444)); | ||
+ | draw((4.66667,0)--(4.66667,2.49444)); | ||
+ | draw((9.66667,2.49444)--(9.66667,0)); | ||
+ | |||
+ | /* points and labels */ | ||
+ | label("r",(10.19662,1.92704),SE); | ||
+ | label("r",(5.02391,1.8773),SE); | ||
+ | dot((0,0)); | ||
+ | label("$A$",(-1.04408,-0.60958),NE); | ||
+ | dot((15,0)); | ||
+ | label("$C$",(15.41907,-0.46037),NE); | ||
+ | dot((6.66667,9.97775)); | ||
+ | label("$B$",(6.66525,10.23322),NE); | ||
+ | label("$15$",(6.01866,-1.15669),NE); | ||
+ | label("$13$",(11.44006,5.50815),NE); | ||
+ | label("$12$",(2.28834,5.75684),NE); | ||
+ | dot((7.33333,0)); | ||
+ | label("$M$",(7.56053,-0.908),NE); | ||
+ | dot((4.66667,2.49444)); | ||
+ | label("$I_1$",(3.97942,2.92179),NE); | ||
+ | dot((9.66667,2.49444)); | ||
+ | label("$I_2$",(10.04741,2.97153),NE); | ||
+ | clip((-3.72991,-6.47862)--(-3.72991,17.44518)--(32.23039,17.44518)--(32.23039,-6.47862)--cycle); | ||
+ | </asy></center> | ||
=== Solution 1 === | === Solution 1 === | ||
Let <math>AM = x</math>, then <math>CM = 15 - x</math>. Also let <math>BM = d</math> Clearly, <math>\frac {[ABM]}{[CBM]} = \frac {x}{15 - x}</math>. We can also express each area by the rs formula. Then <math>\frac {[ABM]}{[CBM]} = \frac {p(ABM)}{p(CBM)} = \frac {12 + d + x}{28 + d - x}</math>. Equating and cross-multiplying yields <math>25x + 2dx = 15d + 180</math> or <math>d = \frac {25x - 180}{15 - 2x}.</math> Note that for d to be positive, we must have <math>7.2 < x < 7.5</math>. | Let <math>AM = x</math>, then <math>CM = 15 - x</math>. Also let <math>BM = d</math> Clearly, <math>\frac {[ABM]}{[CBM]} = \frac {x}{15 - x}</math>. We can also express each area by the rs formula. Then <math>\frac {[ABM]}{[CBM]} = \frac {p(ABM)}{p(CBM)} = \frac {12 + d + x}{28 + d - x}</math>. Equating and cross-multiplying yields <math>25x + 2dx = 15d + 180</math> or <math>d = \frac {25x - 180}{15 - 2x}.</math> Note that for d to be positive, we must have <math>7.2 < x < 7.5</math>. |
Revision as of 16:46, 31 March 2010
Problem
In with
,
, and
, let
be a point on
such that the incircles of
and
have equal radii. Let
and
be positive relatively prime integers such that
. Find
.
Contents
[hide]Solution
![[asy] /* from geogebra: see azjps, userscripts.org/scripts/show/72997 */ import graph; defaultpen(linewidth(0.7)+fontsize(10)); size(200); /* segments and figures */ draw((0,0)--(15,0)); draw((15,0)--(6.66667,9.97775)); draw((6.66667,9.97775)--(0,0)); draw((7.33333,0)--(6.66667,9.97775)); draw(circle((4.66667,2.49444),2.49444)); draw(circle((9.66667,2.49444),2.49444)); draw((4.66667,0)--(4.66667,2.49444)); draw((9.66667,2.49444)--(9.66667,0)); /* points and labels */ label("r",(10.19662,1.92704),SE); label("r",(5.02391,1.8773),SE); dot((0,0)); label("$A$",(-1.04408,-0.60958),NE); dot((15,0)); label("$C$",(15.41907,-0.46037),NE); dot((6.66667,9.97775)); label("$B$",(6.66525,10.23322),NE); label("$15$",(6.01866,-1.15669),NE); label("$13$",(11.44006,5.50815),NE); label("$12$",(2.28834,5.75684),NE); dot((7.33333,0)); label("$M$",(7.56053,-0.908),NE); dot((4.66667,2.49444)); label("$I_1$",(3.97942,2.92179),NE); dot((9.66667,2.49444)); label("$I_2$",(10.04741,2.97153),NE); clip((-3.72991,-6.47862)--(-3.72991,17.44518)--(32.23039,17.44518)--(32.23039,-6.47862)--cycle); [/asy]](http://latex.artofproblemsolving.com/3/b/6/3b652be1b97e4278badbd959e6c825c4bf675a73.png)
Solution 1
Let , then
. Also let
Clearly,
. We can also express each area by the rs formula. Then
. Equating and cross-multiplying yields
or
Note that for d to be positive, we must have
.
By Stewart's Theorem, we have or
Brute forcing by plugging in our previous result for
, we have
Clearing the fraction and gathering like terms, we get
Aside: Since must be rational in order for our answer to be in the desired form, we can use the Rational Root Theorem to reveal that
is an integer. The only such
in the above-stated range is
.
Legitimately solving that quartic, note that and
should clearly be solutions, corresponding to the sides of the triangle and thus degenerate cevians. Factoring those out, we get
The only solution in the desired range is thus
. Then
, and our desired ratio
, giving us an answer of
.
Solution 2
Let and
so
. Let the incenters of
and
be
and
respectively, and their equal inradii be
. From
, we find that
Let the incircle of meet
at
and the incircle of
meet
at
. Then note that
is a rectangle. Also,
is right because
and
are the angle bisectors of
and
respectively and
. By properties of tangents to circles
and
. Now notice that the altitude of
to
is of length
, so by similar triangles we find that
(3). Equating (3) with (1) and (2) separately yields
and adding these we have
See also
- <url>viewtopic.php?t=338911 Discussion</url>
2010 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |