Difference between revisions of "2011 AMC 12A Problems/Problem 18"

(Created page with '== Problem == == Solution == == See also == {{AMC12 box|year=2011|num-b=17|num-a=19|ab=A}}')
 
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Suppose that <math>\left|x+y\right|+\left|x-y\right|=2</math>. What is the maximum possible value of <math>x^2-6x+y^2</math>?
 +
 +
<math>
 +
\textbf{(A)}\ 5 \qquad
 +
\textbf{(B)}\ 6 \qquad
 +
\textbf{(C)}\ 7 \qquad
 +
\textbf{(D)}\ 8 \qquad
 +
\textbf{(E)}\ 9 </math>
 +
 
== Solution ==
 
== Solution ==
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2011|num-b=17|num-a=19|ab=A}}
 
{{AMC12 box|year=2011|num-b=17|num-a=19|ab=A}}

Revision as of 01:36, 10 February 2011

Problem

Suppose that $\left|x+y\right|+\left|x-y\right|=2$. What is the maximum possible value of $x^2-6x+y^2$?

$\textbf{(A)}\ 5 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 9$

Solution

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions