Difference between revisions of "2006 AMC 12B Problems/Problem 24"

m (wikify)
Line 57: Line 57:
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Revision as of 09:47, 4 July 2013

Problem

Let $S$ be the set of all point $(x,y)$ in the coordinate plane such that $0 \le x \le \frac{\pi}{2}$ and $0 \le y \le \frac{\pi}{2}$. What is the area of the subset of $S$ for which \[\sin^2x-\sin x \sin y + \sin^2y \le \frac34?\]

$\mathrm{(A)}\ \dfrac{\pi^2}{9} \qquad \mathrm{(B)}\ \dfrac{\pi^2}{8} \qquad \mathrm{(C)}\ \dfrac{\pi^2}{6} \qquad \mathrm{(D)}\ \dfrac{3\pi^2}{16} \qquad \mathrm{(E)}\ \dfrac{2\pi^2}{9}$

Solution

We start out by solving the equality first. \begin{align*} \sin^2x - \sin x \sin y + \sin^2y &= \frac34 \\ \sin x &= \frac{\sin y \pm \sqrt{\sin^2 y - 4 ( \sin^2y - \frac34 ) }}{2} \\  &= \frac{\sin y \pm \sqrt{3 - 3 \sin^2 y }}{2} \\  &= \frac{\sin y \pm \sqrt{3 \cos^2 y }}{2} \\  &= \frac12 \sin y \pm \frac{\sqrt3}{2} \cos y \\ \sin x &= \sin (y \pm \frac{\pi}{3}) \end{align*} We end up with three lines that matter: $x = y + \frac\pi3$, $x = y - \frac\pi3$, and $x = \pi - (y + \frac\pi3) = \frac{2\pi}{3} - y$. We plot these lines below. [asy] size(5cm); D((0,0)--(3,0)--(3,3)--(0,3)--cycle); D((1,-0.1)--(1,0.1)); D((2,-0.1)--(2,0.1)); D((-0.1,1)--(0.1,1)); D((-0.1,2)--(0.1,2)); D((2,0)--(3,1)--(1,3)--(0,2)); MP("\frac{\pi}{6}", (1,0), plain.S); MP("\frac{\pi}{3}", (2,0), plain.S); MP("\frac{\pi}{2}", (3,0), plain.S); MP("\frac{\pi}{6}", (0,1), plain.W); MP("\frac{\pi}{3}", (0,2), plain.W); MP("\frac{\pi}{2}", (0,3), plain.W); [/asy] Note that by testing the point $(\pi/6,\pi/6)$, we can see that we want the area of the pentagon. We can calculate that by calculating the area of the sqaure and then subtracting the area of the 3 triangles. (Note we could also do this by adding the areas of the isosceles triangle in the bottom left corner and the rectangle with the previous triangle's hypotenuse as the longer side.) \begin{align*} A &= \left(\frac{\pi}{2}\right)^2 - 2 \cdot \frac12 \cdot \left(\frac{\pi}{6}\right)^2 - \frac12 \cdot \left(\frac{\pi}{3}\right)^2 \\ &= \pi^2 \left ( \frac14 - \frac1{36} - \frac1{18}\right ) \\ &= \pi^2 \left ( \frac{9-1-2}{36} \right ) = \boxed{\text{(C)}\ \frac{\pi^2}{6}} \end{align*}

See also

2006 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png