Difference between revisions of "1992 AIME Problems/Problem 1"
Danielguo94 (talk | contribs) m (→Solution 1) |
|||
Line 13: | Line 13: | ||
{{AIME box|year=1992|before=First question|num-a=2}} | {{AIME box|year=1992|before=First question|num-a=2}} | ||
+ | {{MAA Notice}} |
Revision as of 18:23, 4 July 2013
Contents
Problem
Find the sum of all positive rational numbers that are less than 10 and that have denominator 30 when written in lowest terms.
Solution
Solution 1
There are 8 fractions which fit the conditions between 0 and 1:
Their sum is 4. Note that there are also 8 terms between 1 and 2 which we can obtain by adding 1 to each of our first 8 terms. For example, Following this pattern, our answer is
Solution 2
By Euler's Totient Function, there are numbers that are relatively prime to , less than . Note that they come in pairs which result in sums of ; thus the sum of the smallest rational numbers satisfying this is . Now refer to solution 1.
1992 AIME (Problems • Answer Key • Resources) | ||
Preceded by First question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.