Difference between revisions of "2004 AIME I Problems/Problem 15"
m (→Solution) |
|||
Line 2: | Line 2: | ||
For all positive integers <math>x</math>, let | For all positive integers <math>x</math>, let | ||
<cmath> | <cmath> | ||
− | f(x)=\begin{cases}1 & \text{if x = 1 | + | f(x)=\begin{cases}1 & \text{if }x = 1\\ \frac x{10} & \text{if }x\text{ is divisible by 10}\\ x+1 & \text{otherwise}\end{cases} |
</cmath> | </cmath> | ||
and define a [[sequence]] as follows: <math>x_1=x</math> and <math>x_{n+1}=f(x_n)</math> for all positive integers <math>n</math>. Let <math>d(x)</math> be the smallest <math>n</math> such that <math>x_n=1</math>. (For example, <math>d(100)=3</math> and <math>d(87)=7</math>.) Let <math>m</math> be the number of positive integers <math>x</math> such that <math>d(x)=20</math>. Find the sum of the distinct prime factors of <math>m</math>. | and define a [[sequence]] as follows: <math>x_1=x</math> and <math>x_{n+1}=f(x_n)</math> for all positive integers <math>n</math>. Let <math>d(x)</math> be the smallest <math>n</math> such that <math>x_n=1</math>. (For example, <math>d(100)=3</math> and <math>d(87)=7</math>.) Let <math>m</math> be the number of positive integers <math>x</math> such that <math>d(x)=20</math>. Find the sum of the distinct prime factors of <math>m</math>. |
Revision as of 14:20, 1 June 2012
Problem
For all positive integers , let and define a sequence as follows: and for all positive integers . Let be the smallest such that . (For example, and .) Let be the number of positive integers such that . Find the sum of the distinct prime factors of .
Solution
We backcount the number of ways. Namely, we start at , which can only be reached if , and then we perform operations that either consist of or . We represent these operations in a string format, starting with the operation that sends and so forth downwards. There are ways to pick the first operations; however, not all of them may be otherwise we return back to , contradicting our assumption that was the smallest value of . Using complementary counting, we see that there are only ways.
Since we performed the operation at least once in the first operations, it follows that , so that we no longer have to worry about reaching again. Thus the remaining operations can be picked in ways, with a total of strings.
However, we must also account for a sequence of or more s in a row, because that implies that at least one of those numbers was divisible by , yet the was never used, contradiction. We must use complementary counting again by determining the number of strings of s of length such that there are s in a row. The first ten are not included since we already accounted for that scenario above, so our string of s must be preceded by a . There are no other restrictions on the remaining seven characters. Letting to denote either of the functions, and to indicate that the character appears times in a row, then our bad strings can take the forms:
&\underbrace{BA^{[10]}}\square \square \square \square \square \square \square \square \\ &\square \underbrace{BA^{[10]}}\square \square \square \square \square \square \square \\ &\qquad \quad \cdots \quad \cdots \\ &\square \square \square \square \square \square \square \underbrace{BA^{[10]}} \square \\ &\square \square \square \square \square \square \square \square \underbrace{BA^{[10]}} \\
\end{align*}$ (Error compiling LaTeX. Unknown error_msg)There are ways to select the operations for the s, and places to place our block. Thus, our answer is , and the answer is .
See also
2004 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |