Difference between revisions of "1995 AJHSME Problems/Problem 20"
(→Problem) |
|||
Line 8: | Line 8: | ||
Note that the probability of Diana rolling a number larger than Apollo's is the same as the probability of Apollo's being more than Diana's. If we denote this common probability <math>D</math>, then <math>2D+P(</math>Apollo=Diana<math>)=1</math>. Now all we need to do is find <math>P(</math>Apollo=Diana<math>)</math>. There are <math>6(6)=36</math> possibilities total, and 6 of those have Apollo=Diana, so <math>P(</math>Apollo=Diana<math>)=\frac{6}{36}=\frac{1}{6}</math>. Going back to our first equation and solving for D, we get <cmath>2D+\frac{1}{6}=1</cmath> <cmath>2D=\frac{5}{6}</cmath> <cmath>D=\frac{5}{12} \Rightarrow \mathrm{(B)}</cmath> | Note that the probability of Diana rolling a number larger than Apollo's is the same as the probability of Apollo's being more than Diana's. If we denote this common probability <math>D</math>, then <math>2D+P(</math>Apollo=Diana<math>)=1</math>. Now all we need to do is find <math>P(</math>Apollo=Diana<math>)</math>. There are <math>6(6)=36</math> possibilities total, and 6 of those have Apollo=Diana, so <math>P(</math>Apollo=Diana<math>)=\frac{6}{36}=\frac{1}{6}</math>. Going back to our first equation and solving for D, we get <cmath>2D+\frac{1}{6}=1</cmath> <cmath>2D=\frac{5}{6}</cmath> <cmath>D=\frac{5}{12} \Rightarrow \mathrm{(B)}</cmath> | ||
+ | |||
+ | ==See Also== | ||
+ | {{AJHSME box|year=1995|num-b=19|num-a=21}} |
Revision as of 02:20, 23 December 2012
Problem
Diana and Apollo each roll a standard die obtaining a number at random from to . What is the probability that Diana's number is larger than Apollo's number?
Solution
Note that the probability of Diana rolling a number larger than Apollo's is the same as the probability of Apollo's being more than Diana's. If we denote this common probability , then Apollo=Diana. Now all we need to do is find Apollo=Diana. There are possibilities total, and 6 of those have Apollo=Diana, so Apollo=Diana. Going back to our first equation and solving for D, we get
See Also
1995 AJHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |