Difference between revisions of "1980 AHSME Problems/Problem 3"

(Created page with "==Problem== If the ratio of <math>2x-y</math> to <math>x+y</math> is <math>\frac{2}{3}</math>, what is the ratio of <math>x</math> to <math>y</math>? <math>\text{(A)} \ \frac{1...")
 
Line 4: Line 4:
  
 
<math>\text{(A)} \ \frac{1}{5} \qquad \text{(B)} \ \frac{4}{5} \qquad \text{(C)} \ 1 \qquad \text{(D)} \ \frac{6}{5} \qquad \text{(E)} \ \frac{5}{4}</math>
 
<math>\text{(A)} \ \frac{1}{5} \qquad \text{(B)} \ \frac{4}{5} \qquad \text{(C)} \ 1 \qquad \text{(D)} \ \frac{6}{5} \qquad \text{(E)} \ \frac{5}{4}</math>
 +
 +
== Solution ==
 +
 +
Cross multiplying gets
 +
 +
<math>6x-3y=2x+2y\\4x=5y\\ \dfrac{x}{y}=\dfrac{5}{4}\\ \boxed{(E)}</math>
 +
 +
 +
== See also ==
 +
{{AHSME box|year=1980|num-b=2|num-a=4}}

Revision as of 11:22, 31 March 2013

Problem

If the ratio of $2x-y$ to $x+y$ is $\frac{2}{3}$, what is the ratio of $x$ to $y$?

$\text{(A)} \ \frac{1}{5} \qquad \text{(B)} \ \frac{4}{5} \qquad \text{(C)} \ 1 \qquad \text{(D)} \ \frac{6}{5} \qquad \text{(E)} \ \frac{5}{4}$

Solution

Cross multiplying gets

$6x-3y=2x+2y\\4x=5y\\ \dfrac{x}{y}=\dfrac{5}{4}\\ \boxed{(E)}$


See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions