Difference between revisions of "2011 AMC 8 Problems"
Sunflower10 (talk | contribs) (→Problem 7) |
Sunflower10 (talk | contribs) (→Problem 7) |
||
Line 82: | Line 82: | ||
[[2011 AMC 8 Problems/Problem 7|Solution]] | [[2011 AMC 8 Problems/Problem 7|Solution]] | ||
Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially bolded. What percent of the total area is partially bolded? | Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially bolded. What percent of the total area is partially bolded? | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Problem 8== | ==Problem 8== |
Revision as of 21:17, 8 November 2012
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
Problem 1
Margie bought apples at a cost of cents per apple. She paid with a 5-dollar bill. How much change did Margie recieve?
Problem 2
Karl's rectangular vegetable garden is feet by feet, and Makenna's is feet by feet. Whose garden is larger in area?
Problem 3
Extend the square pattern of 8 black and 17 white square tiles by attaching a border of black tiles around the square. What is the ratio of black tiles to white tiles in the extended pattern?
Problem 4
Here is a list of the numbers of fish that Tyler caught in nine outings last summer: Which statement about the mean, median, and mode is true?
Problem 5
What time was it minutes after midnight on January 1, 2011?
Problem 6
In a town of 351 adults, every adult owns a car, motorcycle, or both. If 331 adults own cars and 45 adults own motorcycles, how many of the car owners do not own a motorcycle?
Problem 7
Solution Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially bolded. What percent of the total area is partially bolded?
Problem 8
Bag A has three chips labeled 1, 3, and 5. Bag B has three chips labeled 2, 4, and 6. If one chip is drawn from each bag, how many different values are possible for the sum of the two numbers on the chips?
Problem 9
Problem 10
The taxi fare in Gotham City is $2.40 for the first mile and additional mileage charged at the rate $0.20 for each additional 0.1 mile. You plan to give the driver a $2 tip. How many miles can you ride for $10?
Problem 11
Problem 12
Angie, Bridget, Carlos, and Diego are seated at random around a square table, one person to a side. What is the probability that Angie and Carlos are seated opposite each other?
Problem 13
Problem 14
There are students at Colfax Middle School, where the ratio of boys to girls is . There are students at Winthrop Middle School, where the ratio of boys to girls is . The two schools hold a dance and all students from both schools attend. What fraction of the students at the dance are girls?
Problem 15
How many digits are in the product ?
Problem 16
Let be the area of the triangle with sides of length , and . Let be the area of the triangle with sides of length and . What is the relationship between and ?
Problem 17
Let , , , and be whole numbers. If , then what does equal?
Problem 18
A fair 6-sided die is rolled twice. What is the probability that the first number that comes up is greater than or equal to the second number?
Problem 19
How many rectangles are in this figure?
Problem 20
Quadrilateral is a trapezoid, , , , and the altitude is . What is the area of the trapeziod?
Problem 21
Students guess that Norb's age is , and . Norb says, "At least half of you guessed too low, two of you are off by one, and my age is a prime number." How old is Norb?
Problem 22
What is the tens digit of ?
Problem 23
How many 4-digit positive integers have four different digits, where the leading digit is not zero, the integer is a multiple of 5, and 5 is the largest digit?
Problem 24
In how many ways can 10001 be written as the sum of two primes?
Problem 25
A circle with radius is inscribed in a square and circumscribed about another square as shown. Which fraction is closest to the ratio of the circle's shaded area to the area between the two squares?