Difference between revisions of "2002 AMC 10A Problems/Problem 1"

m (Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
We factor <math>\frac{10^{2000}+10^{2002}}{10^{2001}+10^{2001}}</math> as <math>\frac{10^{2000}(1+100)}{10^{2001}(1+1)}=\frac{101}{20}</math>. As <math>\frac{101}{20}=5.05</math>, our answer is <math>\boxed{\text{(D)}\ 5 }</math>.
+
We factor <math>\frac{10^{2000}+10^{2002}}{10^{2001}+10^{2001}}</math> as <math>\frac{10^{2000}(1+100)}{10^{2001}(1+1)}=\frac{101}{20}</math>. As <math>\frac{101}{20}=5.05</math>, our answer is <math>\boxed{\textbf{(D)}\ 5 }</math>.
  
 
==See Also==
 
==See Also==

Revision as of 21:47, 27 July 2016

Problem

The ratio $\frac{10^{2000}+10^{2002}}{10^{2001}+10^{2001}}$ is closest to which of the following numbers?

$\text{(A)}\ 0.1 \qquad \text{(B)}\ 0.2 \qquad \text{(C)}\ 1 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 10$

Solution

We factor $\frac{10^{2000}+10^{2002}}{10^{2001}+10^{2001}}$ as $\frac{10^{2000}(1+100)}{10^{2001}(1+1)}=\frac{101}{20}$. As $\frac{101}{20}=5.05$, our answer is $\boxed{\textbf{(D)}\ 5 }$.

See Also

2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png