Difference between revisions of "2008 AMC 10B Problems/Problem 14"
(→Problem) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Triangle <math>OAB</math> has <math>O=(0,0)</math>, <math>B=(5,0)</math>, and <math>A</math> in the first quadrant. In addition, <math>\angle ABO=90^\circ</math> and <math>\angle AOB=30^\circ</math>. Suppose that <math>OA</math> is rotated <math>90^\circ</math> counterclockwise about <math>O</math>. What are the coordinates of the image of <math>A</math>? | + | <!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>Triangle <math>OAB</math> has <math>O=(0,0)</math>, <math>B=(5,0)</math>, and <math>A</math> in the first quadrant. In addition, <math>\angle ABO=90^\circ</math> and <math>\angle AOB=30^\circ</math>. Suppose that <math>OA</math> is rotated <math>90^\circ</math> counterclockwise about <math>O</math>. What are the coordinates of the image of <math>A</math>? <!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude> |
<math> | <math> |
Revision as of 17:54, 27 March 2015
Problem
Triangle has , , and in the first quadrant. In addition, and . Suppose that is rotated counterclockwise about . What are the coordinates of the image of ?
Solution
As and in the first quadrant, we know that the coordinate of is . We now need to pick a positive coordinate for so that we'll have .
By the Pythagorean theorem we have .
By the definition of sine, we have , hence .
Substituting into the previous equation, we get , hence .
This means that the coordinates of are .
After we rotate counterclockwise about , it will get into the second quadrant and have the coordinates .
See also
2008 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.